BestLightNovel.com

The Elements of Geology Part 25

The Elements of Geology - BestLightNovel.com

You’re reading novel The Elements of Geology Part 25 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

The presence of fire clay beneath a seam points in the same direction. Such underclays withstand intense heat and are used in making fire brick, because their alkalies have been removed by the long-continued growth of vegetation.

Fuel coal is also too pure to have been acc.u.mulated by driftage.

In that case we should expect to find it mixed with mud, while in fact it often contains no more ash than the vegetal matter would furnish from which it has been compressed.

These conditions are fairly met in the great swamps of river plains and deltas and of coastal plains, such as the great Dismal Swamp, where thousands of generations of forests with their undergrowths contribute their stems and leaves to form thick beds of peat. A coal seam is a fossil peat bed.

GEOGRAPHICAL CONDITIONS DURING THE PENNSYLVANIAN. The Carboniferous peat swamps were of vast extent. A map of the Coal Measures (Fig. 260) shows that the coal marshes stretched, with various interruptions of higher ground and straits of open water, from eastern Pennsylvania into Alabama, Texas, and Kansas. Some individual coal beds may still be traced over a thousand square miles, despite the erosion which they have suffered. It taxes the imagination to conceive that the varied region included within these limits was for hundreds of thousands of years a marshy plain covered with tropical jungles such as that pictured in Figure 304.

On the basis that peat loses four fifths of its bulk in changing to coal, we may reckon the thickness of these ancient peat beds.

Coal seams six and ten feet thick, which are not uncommon, represent peat beds thirty and fifty feet in thickness, while mammoth coal seams fifty feet thick have been compressed from peat beds two hundred and fifty feet deep.

At the same time, the thousands of feet of marine and freshwater sediments, with their repeated alternations of limestones, sandstones, and shales, in which the seams of coal occur, prove a slow subsidence, with many changes in its rate, with halts when the land was at a stillstand, and with occasional movements upward.

When subsidence was most rapid and long continued the sea encroached far and wide upon the lowlands and covered the coal swamps with sands and muds and limy oozes. When subsidence slackened or ceased the land gained on the sea. Bays were barred, and lagoons as they gradually filled with mud became marshes.

River deltas pushed forward, burying with their silts the sunken peat beds of earlier centuries, and at the surface emerged in broad, swampy flats,--like those of the deltas of the Mississippi and the Ganges,--which soon were covered with luxuriant forests.

At times a gentle uplift brought to sea level great coastal plains, which for ages remained mantled with the jungle, their undeveloped drainage clogged with its debris, and were then again submerged.

PHYSICAL GEOGRAPHY OF THE SEVERAL REGIONS. THE ACADIAN REGION lay on the eastern side of the northern land, where now are New Brunswick and Nova Scotia, and was an immense river delta. Here river deposits rich in coal acc.u.mulated to a depth of sixteen thousand feet. The area of this coal field is estimated at about thirty-six thousand square miles.

THE APPALACHIAN REGION skirts the Appalachian oldland on the west from the southern boundary of New York to northern Alabama, extending west into eastern Ohio. The Cincinnati anticline was now a peninsula, and the broad gulf which had lain between it and Appalachia was transformed at the beginning of the Pennsylvanian into wide marshy plains, now sinking beneath the sea and now emerging from it. This area subsided during the Carboniferous period to a depth of nearly ten thousand feet.

THE CENTRAL REGION lay west of the peninsula of the Cincinnati anticline, and extended from Indiana west into eastern Nebraska, and from central Iowa and Illinois southward about the ancient island in Missouri and Arkansas into Oklahoma and Texas. On the north the subsidence in this area was comparatively slight, for the Carboniferous strata scarcely exceed two thousand feet in thickness. But in Arkansas and Indian Territory the downward movement amounted to four and five miles, as is proved by shoal water deposits of that immense thickness.

The coal fields of Indiana, and Illinois are now separated by erosion from those lying west of the Mississippi River. At the south the Appalachian land seems still to have stretched away to the west across Louisiana and Mississippi into Texas, and this westward extension formed the southern boundary of the coal marshes of the continent.

The three regions just mentioned include the chief Carboniferous coal fields of North America. Including a field in central Michigan evidently formed in an inclosed basin (Fig. 260), and one in Rhode Island, the total area of American coal fields has been reckoned at not less than two hundred thousand square miles. We can hardly estimate the value of these great stores of fossil fuel to an industrial civilization. The forests of the coal swamps acc.u.mulated in their woody tissues the energy which they received from the sun in light and heat, and it is this solar energy long stored in coal seams which now forms the world's chief source of power in manufacturing.

THE WESTERN AREA. On the Great Plains beyond the Missouri River the Carboniferous strata pa.s.s under those of more recent systems.

Where they reappear, as about dissected mountain axes or on stripped plateaus, they consist wholly of marine deposits and are devoid of coal. The rich coal fields of the West are of later date.

On the whole the Carboniferous seems to have been a time of subsidence in the West. Throughout the period a sea covered the Great Basin and the plateaus of the Colorado River. At the time of the greatest depression the sites of the central chains of the Rockies were probably islands, but early in the period they may have been connected with the broad lands to the south and east.

Thousands of feet of Carboniferous sediments were deposited where the Sierra Nevada Mountains now stand.

THE PERMIAN. As the Carboniferous period drew toward its close the sea gradually withdrew from the eastern part of the continent.

Where the sea lingered in the deepest troughs, and where inclosed basins were cut off from it, the strata of the Permian were deposited. Such are found in New Brunswick, in Pennsylvania and West Virginia, in Texas, and in Kansas. In southwestern Kansas extensive Permian beds of rock salt and gypsum show that here lay great salt lakes in which these minerals were precipitated as their brines grew dense and dried away.

In the southern hemisphere the Permian deposits are so extraordinary that they deserve a brief notice, although we have so far omitted mention of the great events which characterized the evolution of other continents than our own. The Permian fauna- flora of Australia, India, South Africa, and the southern part of South America are so similar that the inference is a reasonable one that these widely separated regions were then connected together, probably as extensions of a great antarctic continent.

Interbedded with the Permian strata of the first three countries named are extensive and thick deposits of a peculiar nature which are clearly ancient ground moraines. Clays and sand, now hardened to firm rock, are inset with unsorted stones of all sizes, which often are faceted and scratched. Moreover, these bowlder clays rest on rock pavements which are polished and scored with glacial markings. Hence toward the close of the Paleozoic the southern lands of the eastern hemisphere were invaded by great glaciers or perhaps by ice sheets like that which now shrouds Greenland.

These Permian ground moraines are not the first traces of the work of glaciers met with in the geological record. Similar deposits prove glaciation in Norway succeeding the pre-Cambrian stage of elevation, and Cambrian glacial drift has recently been found in China.

THE APPALACHIAN DEFORMATION. We have seen that during Paleozoic times a long, narrow trough of the sea lay off the western coast of the ancient land of Appalachia, where now are the Appalachian Mountains. During the long ages of this era the trough gradually subsided, although with many stillstands and with occasional slight oscillations upward. Meanwhile the land lying to the east was gradually uplifted at varying rates and with long pauses. The waste of the rising land was constantly transferred to the sinking marginal sea bottom, and on the whole the trough was filled with sediments as rapidly as it subsided. The sea was thus kept shallow, and at times, especially toward the close of the era, much of the area was upbuilt or raised to low, marshy, coastal plains. When the Carboniferous was ended the waste which had been removed from the land and laid along its margin in the successive formations of the Paleozoic had reached a thickness of between thirty and forty thousand feet.

Both by sedimentation and by subsidence the trough had now become a belt of weakness in the crust of the earth. Here the crust was now made of layers to the depth of six or seven miles. In comparison with the ma.s.sive crystalline rocks of Appalachia on the east, the layered rock of the trough was weak to resist lateral pressure, as a ream of sheets of paper is weak when compared with a solid board of the same thickness. It was weaker also than the region to the west, since there the sediments were much thinner.

Besides, by the long-continued depression the strata of the trough had been bent from the flat-lying att.i.tude in which they were laid to one in which they were less able to resist a horizontal thrust.

There now occurred one of the critical stages in the history of the planet, when the crust crumples under its own weight and shrinks down upon a nucleus which is diminis.h.i.+ng in volume and no longer able to support it. Under slow but resistless pressure the strata of the Appalachian trough were thrust against the rigid land, and slowly, steadily bent into long folds whose axes ran northeast-southwest parallel to the ancient coast line. It was on the eastern side next the b.u.t.tress of the land that the deformation was the greatest, and the folds most steep and close.

In central Pennsylvania and West Virginia the folds were for the most part open. South of these states the folds were more closely appressed, the strata were much broken, and the great thrust faults were formed which have been described already. In eastern Pennsylvania seams of bituminous coal were altered to anthracite, while outside the region of strong deformation, as in western Pennyslvania, they remained unchanged. An important factor in the deformation was the ma.s.sive limestones of the Cambrian-Ordovician.

Because of these thick, resistant beds the rocks were bent into wide folds and sheared in places with great thrust faults. Had the strata been weak shales, an equal pressure would have crushed and mashed them.

Although the great earth folds were slowly raised, and no doubt eroded in their rising, they formed in all probability a range of lofty mountains, with a width of from fifty to a hundred and twenty-five miles, which stretched from New York to central Alabama.

From their bases lowlands extended westward to beyond the Missouri River. At the same time ranges were upridged out of thick Paleozoic sediments both in the Bay of Fundy region and in the Indian Territory. The eastern portion of the North American continent was now well-nigh complete.

The date of the Appalachian deformation is told in the usual way.

The Carboniferous strata, nearly two miles thick, are all infolded in the Appalachian ridges, while the next deposits found in this region--those of the later portion of the first period (the Trias) of the succeeding era--rest unconformably on the worn edges of the Appalachian folded strata. The deformation therefore took place about the close of the Paleozoic. It seems to have begun in the Permian, in, eastern Pennsylvania,--for here the Permian strata are wanting,--and to have continued into the Trias, whose earlier formations are absent over all the area.

With this wide uplift the subsidence of the sea floor which had so long been general in eastern North America came to an end.

Deposition now gave place to erosion. The sedimentary record of the Paleozoic was closed, and after an unknown lapse of time, here unrecorded, the annals of the succeeding era were written under changed conditions.

In western North America the closing stages of the Paleozoic were marked by important oscillations. The Great Basin, which had long been a mediterranean sea, was converted into land over western Utah and eastern Nevada, while the waves of the Pacific rolled across California and western Nevada.

The absence of tuffs and lavas among the Carboniferous strata of North America shows that here volcanic action was singularly wanting during the entire period. Even the Appalachian deformation was not accompanied by any volcanic outbursts.

LIFE OF THE CARBONIFEROUS

PLANTS. The gloomy forests and dense undergrowths of the Carboniferous jungles would appear unfamiliar to us could we see them as they grew, and even a botanist would find many of their forms perplexing and hard to cla.s.sify. None of our modern trees would meet the eye. Plants with conspicuous flowers of fragrance and beauty were yet to come. Even mosses and gra.s.ses were still absent.

Tree ferns lifted their crowns of feathery fronds high in air on trunks of woody tissue; and lowly herbaceous ferns, some belonging to existing families, carpeted the ground. Many of the fernlike forms, however, have distinct affinities with the cycads, of which they may be the ancestors, and some bear seeds and must be cla.s.sed as gymnosperms.

Dense thickets, like cane or bamboo brakes, were composed of thick clumps of CALAMITES, whose slender, jointed stems shot up to a height of forty feet, and at the joints bore slender branches set with whorls of leaves. These were close allies of the Equiseta or "horsetails," of the present; but they bore characteristics of higher cla.s.ses in the woody structures of their stems.

There were also vast monotonous forests, composed chiefly of trees belonging to the lycopods, and whose nearest relatives to-day are the little club mosses of our eastern woods. Two families of lycopods deserve special mention,--the Lepidodendrons and the Sigillaria.

The LEPIDODENDRON, or "scale tree," was a gigantic club moss fifty and seventy-five feet high, spreading toward the top into stout branches, at whose ends were borne cone-shaped spore cases. The younger parts of the tree were clothed with stiff needle-shaped leaves, but elsewhere the trunk and branches were marked with scalelike scars, left by the fallen leaves, and arranged in spiral rows.

The SIGILLARIA, or "seal tree," was similar to the Lepidodendron, but its fluted trunk divided into even fewer branches, and was dotted with vertical rows of leaf scars, like the impressions of a seal.

Both Lepidodendron and Sigillaria were anch.o.r.ed by means of great cablelike underground stems, which ran to long distances through the marshy ground. The trunks of both trees had a thick woody rind, inclosing loose cellular tissue and a pith. Their hollow stumps, filled with sand and mud, are common in the Coal Measures, and in them one sometimes finds leaves and stems, land sh.e.l.ls, and the bones of little reptiles of the time which made their home there.

It is important to note that some of these gigantic lycopods, which are cla.s.sed with the CRYPTOGAMS, or flowerless plants, had pith and medullary rays dividing their cylinders into woody wedges. These characters connect them with the PHANEROGAMS, or flowering plants. Like so many of the organisms of the remote past, they were connecting types from which groups now widely separated have diverged.

Gymnosperms, akin to the cycads, were also present in the Carboniferous forests. Such were the different species of CORDAITES, trees pyramidal in shape, with strap-shaped leaves and nutlike fruit. Other gymnosperms were related to the yews, and it was by these that many of the fossil nuts found in the Coal Measures were borne. It is thought by some that the gymnosperms had their station on the drier plains and higher lands.

The Carboniferous jungles extended over parts of Europe and of Asia, as well as eastern North America, and reached from the equator to within nine degrees of the north pole. Even in these widely separated regions the genera and species of coal plants are close akin and often identical.

INVERTEBRATES. Among the echinoderms, crinoids are now exceedingly abundant, sea urchins are more plentiful, and sea cuc.u.mbers are found now for the first time. Trilobites are rapidly declining, and pa.s.s away forever with the close of the period. Eurypterids are common; stinging scorpions are abundant; and here occur the first-known spiders.

We have seen that the arthropods were the first of all animals to conquer the realm of the air, the earliest insects appearing in the Ordovician. Insects had now become exceedingly abundant, and the Carboniferous forests swarmed with the ancestral types of dragon flies,--some with a spread of wing of more than two feet,-- May flies, crickets, and locusts. c.o.c.kroaches infested the swamps, and one hundred and thirty-three species of this ancient order have been discovered in the Carboniferous of North America. The higher flower-loving insects are still absent; the reign of the flowering plants has not yet begun. The Paleozoic insects were generalized types connecting the present orders. Their fore wings were still membranous and delicately veined, and used in flying; they had not yet become thick, and useful only as wing covers, as in many of their descendants.

FISHES still held to the Devonian types, with the exception that the strange ostracoderms now had perished.

AMPHIBIANS. The vertebrates had now followed the arthropods and the mollusks upon the land, and had evolved a higher type adapted to the new environment. Amphibians--the cla.s.s to which frogs and salamanders belong--now appear, with lungs for breathing air and with limbs for locomotion on the land. Most of the Carboniferous amphibians were shaped like the salamander, with weak limbs adapted more for crawling than for carrying the body well above the ground. Some legless, degenerate forms were snakelike in shape.

The earliest amphibians differ from those of to-day in a number of respects. They were connecting types linking together fishes, from which they were descended, with reptiles, of which they were the ancestors. They retained the evidence of their close relations.h.i.+p with the Devonian fishes in their cold blood, their gills and aquatic habit during their larval stage, their teeth with dentine infolded like those of the Devonian ganoids but still more intricately, and their biconcave vertebrae which never completely ossified. These, the highest vertebrates of the time, had not yet advanced beyond the embryonic stage of the more or less cartilaginous skeleton and the persistent notochord.

On the other hand, the skull of the Carboniferous amphibians was made of close-set bony plates, like the skull of the reptile, rather than like that of the frog, with its open s.p.a.ces (Figs. 313 and 314). Unlike modern amphibians, with their slimy skin, the Carboniferous amphibians wore an armor of bony scales over the ventral surface and sometimes over the back as well.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Elements of Geology Part 25 summary

You're reading The Elements of Geology. This manga has been translated by Updating. Author(s): William Harmon Norton. Already has 551 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com