The Elements of Geology - BestLightNovel.com
You’re reading novel The Elements of Geology Part 30 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
The ice field of Europe was much smaller, measuring about seven hundred and seventy thousand square miles.
CENTERS OF DISPERSION. The direction of the movement of the ice is recorded plainly in the scorings of the rock surface, in the shapes of glaciated hills, in the axes of drumlins and eskers, and in trains of bowlders, when the ledges from which they were plucked can be discovered. In these ways it has been proved that in North America there were three centers where ice gathered to the greatest depth, and from which it flowed in all directions outward. There were thus three vast ice fields,--one the Cordilleran, which lay upon the Cordilleras of British America; one the Keewatin, which flowed out from the province of Keewatin, west of Hudson Bay; and one the LABRADOR ice field, whose center of dispersion was on the highlands of the peninsula of Labrador.
As shown in Figure 359, the western ice field extended but a short way beyond the eastern foothills of the Rocky Mountains, where perhaps it met the far-traveled ice from the great central field.
The Keewatin and the Labrador ice fields flowed farthest toward the south, and in the Mississippi valley the one reached the mouth of the Missouri and the other nearly to the mouth of the Ohio. In Minnesota and Wisconsin and northward they merged in one vast field.
The thickness of the ice was so great that it buried the highest mountains of eastern North America, as is proved by the transported bowlders which have been found upon their summits. If the land then stood at its present height above sea level, and if the average slope of the ice were no more than ten feet to the mile,--a slope so gentle that the eye could not detect it and less than half the slope of the interior of the inland ice of Greenland,--the ice plateaus about Hudson Bay must have reached a thickness of at least ten thousand feet.
In Europe the Scandinavian plateau was the chief center of dispersion. At the time of greatest glaciation a continuous field of ice extended from the Ural Mountains to the Atlantic, where, off the coasts of Norway and the British Isles, it met the sea in an unbroken ice wall. On the south it reached to southern England, Belgium, and central Germany, and deployed on the eastern plains in wide lobes over Poland and central Russia (Fig. 360).
At the same time the Alps supported giant glaciers many times the size of the surviving glaciers of to-day, and a piedmont glacier covered the plains of northern Switzerland.
THE THICKNESS OF THE DRIFT. The drift is far from uniform in thickness. It is comparatively thin and scanty over the Laurentian highlands and the rugged regions of New England, while from southern New York and Ontario westward over the Mississippi valley, and on the great western plains of Canada, it exceeds an average of one hundred feet over wide areas, and in places has five and six times that thickness. It was to this marginal belt that the ice sheets brought their loads, while northwards, nearer the centers of dispersion, erosion was excessive and deposition slight.
SUCCESSIVE ICE INVASIONS AND THEIR DRIFT SHEETS. Recent studies of the drift prove that it does not consist of one indivisible formation, but includes a number of distinct drift sheets, each with its own peculiar features. The Pleistocene epoch consisted, therefore, of several glacial stages,--during each of which the ice advanced far southward,--together with the intervening interglacial stages when, under a milder climate, the ice melted back toward its sources or wholly disappeared.
The evidences of such interglacial stages, and the means by which the different drift sheets are told apart, are ill.u.s.trated in Figure 361. Here the country from N to S is wholly covered by drift, but the drift from N to m is so unlike that from m to S that we may believe it the product of a distinct ice invasion and deposited during another and far later glacial stage. The former drift is very young, for its drainage is as yet immature, and there are many lakes and marshes upon its surface; the latter is far older, for its surface has been thoroughly dissected by its streams. The former is but slightly weathered, while the latter is so old that it is deeply reddened by oxidation and is leached of its soluble ingredients such as lime. The younger drift is bordered by a distinct terminal moraine, while the margin of the older drift is not thus marked. Moreover, the two drift sheets are somewhat unlike in composition, and the different proportion of pebbles of the various kinds of rocks which they contain shows that their respective glaciers followed different tracks and gathered their loads from different regions. Again, in places beneath the younger drift there is found the buried land surface of an older drift with old soils, forest grounds, and vegetable deposits, containing the remains of animals and plants, which tell of the climate of the interglacial stage in which they lived.
By such differences as these the following drift sheets have been made out in America, and similar subdivisions have been recognized in Europe.
5 The Wisconsin formation 4 The Iowan formation 3 The Illinoian formation 2 The Kansan formation 1 The pre-Kansan or Jerseyan formation
In New Jersey and Pennsylvania the edge of a deeply weathered and eroded drift sheet, the Jerseyan, extends beyond the limits of a much younger overlying drift. It may be the equivalent of a deep- buried basal drift sheet found in the Mississippi valley beneath the Kansan and parted from it by peat, old soil, and gravel beds.
The two succeeding stages mark the greatest snowfall of the Glacial epoch. In Kansan times the Keewatin ice field slowly grew southward until it reached fifteen hundred miles from its center of dispersion and extended from the Arctic Ocean to northeastern Kansas. In the Illinoian stage the Labrador ice field stretched from Hudson Straits nearly to the Ohio River in Illinois. In the Iowan and the Wisconsin, the closing stages of the Glacial epoch, the readvancing ice fields fell far short of their former limits in the Mississippi valley, but in the eastern states the Labrador ice field during Wisconsin times overrode for the most part all earlier deposits, and, covering New England, probably met the ocean in a continuous wall of ice which set its bergs afloat from Ma.s.sachusetts to northern Labrador.
We select for detailed description the Kansan and the Wisconsin formations as representatives, the one of the older and the other of the younger drift sheets.
THE KANSAN FORMATION. The Kansan drift consists for the most part of a sheet of clayey till carrying smaller bowlders than the later drift. Few traces of drumlins, kames, or terminal moraines are found upon the Kansan drift, and where thick enough to mask the preexisting surface, it seems to have been spread originally in level plains of till.
The initial Kansan plain has been worn by running water until there are now left only isolated patches and the narrow strips and crests of the divides, which still rise to the ancient level. The valleys of the larger streams have been opened wide. Their well- developed tributaries have carved nearly the entire plain to valley slopes (Figs. 50 B, and 59). The lakes and marshes which once marked the infancy of the region have long since been effaced. The drift is also deeply weathered. The till, originally blue in color, has been yellowed by oxidation to a depth of ten and twenty feet and even more, and its surface is sometimes rusted to terra-cotta red. To a somewhat less depth it has been leached of its lime and other soluble ingredients. In the weathered zone its pebbles, especially where the till is loose in texture, are sometimes so rotted that granites may be crumbled with the fingers. The Kansan drift is therefore old.
THE WISCONSIN FORMATION. The Wisconsin drift sheet is but little weathered and eroded, and therefore is extremely young. Oxidation has effected it but slightly, and lime and other soluble plant foods remain undissolved even at the gra.s.s roots. Its river systems are still in their infancy (Fig. 50, A). Swamps and peat bogs are abundant on its undrained surface, and to this drift sheet belong the lake lands of our northern states and of the Laurentian peneplain of Canada.
The lake basins of the Wisconsin drift are of several different cla.s.ses. Many are shallow sags in the ground moraine. Still more numerous are the lakes set in hollows among the hills of the terminal moraines; such as the thousands of lakelets of eastern Ma.s.sachusetts. Indeed, the terminal moraines of the Wisconsin drift may often be roughly traced on maps by means of belts of lakes and ponds. Some lakes are due to the blockade of ancient valleys by morainic delms, and this cla.s.s includes many of the lakes of the Adirondacks, the mountain regions of New England, and the Laurentian area. Still other lakes rest in rock basins scooped out by glaciers. In many cases lakes are due to more than one cause, as where preglacial valleys have both been basined by the ice and blockaded by its moraines. The Finger lakes of New York, for example, occupy such glacial troughs.
Ma.s.sive TERMINAL MORAINES, which mark the farthest limits to which the Wisconsin ice advanced, have been traced from Cape Cod and the islands south of New England, across the Appalachians and the Mississippi valley, through the Dakotas, and far to the north over the plains of British America. Where the ice halted for a time in its general retreat, it left RECESSIONAL MORAINES, as this variety of the terminal moraine is called. The moraines of the Wisconsin drift lie upon the country like great festoons, each series of concentric loops marking the utmost advance of broad lobes of the ice margin and the various pauses in their recession.
Behind the terminal moraines lie wide till plains, in places studded thickly with drumlins, or ridged with an occasional esker.
Great outwash plains of sand and gravel lie in front of the moraine belts, and long valley trains of coa.r.s.e gravels tell of the swift and powerful rivers of the time.
THE LOESS OF THE MISSISSIPPI VALLEY. A yellow earth, quite like the loess of China, is laid broadly as a surface deposit over the Mississippi valley from eastern Nebraska to Ohio outside the boundaries of the Iowan and the Wisconsin drift. Much of the loess was deposited in Iowan times. It is younger than the earlier drift sheets, for it overlies their weathered and eroded surfaces. It thickens to the Iowan drift border, but is not found upon that drift. It is older than the Wisconsin, for in many places it pa.s.ses underneath the Wisconsin terminal moraines. In part the loess seems to have been washed from glacial waste and spread in sluggish glacial waters, and in part to have been distributed by the wind from plains of aggrading glacial streams.
THE EFFECTS OF THE ICE INVASIONS ON RIVERS. The repeated ice invasions of the Pleistocene profoundly disarranged the drainage systems of our northern states. In some regions the ancient valleys were completely filled with drift. On the withdrawal of the ice the streams were compelled to find their way, as best they could, over a fresh land surface, where we now find them flowing on the drift in young, narrow channels. But hundreds of feet below the ground the well driller and the prospector for coal and oil discover deep, wide, buried valleys cut in rock,--the channels of preglacial and interglacial streams. In places the ancient valleys were filled with drift to a depth of a hundred feet, and sometimes even to a depth of four hundred and five hundred feet. In such valleys, rivers now flow high above their ancient beds of rock on floors of valley drift. Many of the valleys of our present rivers are but patchworks of preglacial, interglacial, and postglacial courses (Fig. 366). Here the river winds along an ancient valley with gently sloping sides and a wide alluvial floor perhaps a mile or so in width, and there it enters a young, rock-walled gorge, whose rocky bed may be crossed by ledges over which the river plunges in waterfalls and rapids.
In such cases it is possible that the river was pushed to one side of its former valley by a lobe of ice, and compelled to cut a new channel in the adjacent uplands. A section of the valley may have been blockaded with morainic waste, and the lake formed behind the barrier may have found outlet over the country to one side of the ancient drift-filled valley. In some instances it would seem that during the waning of the ice sheets, glacial streams, while confined within walls of stagnant ice, cut down through the ice and incised their channels on the underlying country, in some cases being let down on old river courses, and in other cases excavating gorges in adjacent uplands.
PLEISTOCENE LAKES. Temporary lakes were formed wherever the ice front dammed the natural drainage of the region. Some, held in the minor valleys crossed by ice lobes, were small, and no doubt many were too short-lived to leave lasting records. Others, long held against the northward sloping country by the retreating ice edge, left in their beaches their clayey beds, and their outlet channels permanent evidences of their area and depth. Some of these glacial lakes are thus known to have been larger than any present lake.
Lake Aga.s.siz, named in honor of the author of the theory of continental glaciation, is supposed to have been held by the united front of the Keewatin and the Labrador ice fields as they finally retreated down the valley of the Red River of the North and the drainage basin of Lake Winnipeg. From first to last Lake Aga.s.siz covered a hundred and ten thousand square miles in Manitoba and the adjacent parts of Minnesota and North Dakota,--an area larger than all the Great Lakes combined. It discharged its waters across the divide which held it on the south, and thus excavated the valley of the Minnesota River. The lake bed--a plain of till--was spread smooth and level as a floor with lacustrine silts. Since Lake Aga.s.siz vanished with the melting back of the ice beyond the outlet by the Nelson River into Hudson Bay, there has gathered on its floor a deep humus, rich in the nitrogenous elements so needful for the growth of plants, and it is to this soil that the region owes its well-known fertility.
THE GREAT LAKES. The basins of the Great Lakes are broad preglacial river valleys, warped by movements of the crust still in progress, enlarged by the erosive action of lobes of the continental ice sheets, and blockaded by their drift. The complicated glacial and postglacial history of the lakes is recorded in old strand lines which have been traced at various heights about them, showing their areas and the levels at which their waters stood at different times.
With the retreat of the lobate Wisconsin ice sheet toward the north and east, the southern and western ends of the basins of the Great Lakes were uncovered first; and here, between the receding ice front and the slopes of land which faced it, lakes gathered which increased constantly in size.
The lake which thus came to occupy the western end of the Lake Superior basin discharged over the divide at Duluth down the St.
Croix River, as an old outlet channel proves; that which held the southern end of the basin of Lake Michigan sent its overflow across the divide at Chicago via the Illinois River to the Mississippi; the lake which covered the lowlands about the western end of Lake Erie discharged its waters at Fort Wayne into the Wabash River.
The ice still blocked the Mohawk and St. Lawrence valleys on the east, while on the west it had retreated far to the north. The lakes become confluent in wide expanses of water, whose depths and margins, as shown by their old lake beaches, varied at different times with the position of the confining ice and with warpings of the land. These vast water bodies, which at one or more periods were greater than all the Great Lakes combined, discharged at various times across the divide at Chicago, near Syracuse, New York, down the Mohawk valley, and by a channel from Georgian Bay into the Ottawa River. Last of all the present outlet by the St.
Lawrence was established.
The beaches of the glacial lakes just mentioned are now far from horizontal. That of the lake which occupied the Ontario basin has an elevation of three hundred and sixty-two feet above tide at the west and of six hundred and seventy-five feet at the northeast, proving here a differential movement of the land since glacial times amounting to more than three hundred feet. The beaches which mark the successive heights of these glacial lakes are not parallel; hence the warping began before the Glacial epoch closed.
We have already seen that the canting of the region is still in progress.
THE CHAMPLAIN SUBSIDENCE. As the Glacial epoch approached its end, and the Labrador ice field melted back for the last time to near its source, the land on which the ice had lain in eastern North America was so depressed that the sea now spread far and wide up the St. Lawrence valley. It joined with Lake Ontario, and extending down the Champlain and Hudson valleys, made an island of New England and the maritime provinces of Canada.
The proofs of this subsidence are found in old sea beaches and sea-laid clays resting on Wisconsin till. At Montreal such terraces are found six hundred and twenty feet above sea level, and along Lake Champlain--where the skeleton of a whale was once found among them--at from five hundred to four hundred feet. The heavy delta which the Mohawk River built at its mouth in this arm of the sea now stands something more than three hundred feet above sea level. The clays of the Champlain subsidence pa.s.s under water near the mouth of the Hudson, and in northern New Jersey they occur two hundred feet below tide. In these elevations we have measures of the warping of the region since glacial times.
THE WESTERN UNITED STATES IN GLACIAL TIMES. The western United States was not covered during the Pleistocene by any general ice sheet, but all the high ranges were capped with permanent snow and nourished valley glaciers, often many times the size of the existing glaciers of the Alps. In almost every valley of the Sierras and the Rockies the records of these vanished ice streams may be found in cirques, glacial troughs, roches moutonnecs, and morainic deposits.
It was during the Glacial epoch that Lakes Bonneville and Lahontan were established in the Great Basin, whose climate must then have been much more moist than now.
THE DRIFTLESS AREA. In the upper Mississippi valley there is an area of about ten thousand square miles in southwestern Wisconsin and the adjacent parts of Iowa and Minnesota, which escaped the ice invasions. The rocks are covered with residual clays, the product of long preglacial weathering. The region is an ancient peneplain, uplifted and dissected in late Tertiary times, with mature valleys whose gentle gradients are unbroken by waterfalls and rapids. Thus the driftless area is in strong contrast with the immature drift topography about it, where lakes and waterfalls are common. It is a bit of preglacial landscape, showing the condition of the entire region before the Glacial epoch.
The driftless area lay to one side of the main track of both the Keewatin and the Labrador ice fields, and at the north it was protected by the upland south of Lake Superior, which weakened and r.e.t.a.r.ded the movement of the ice.
South of the driftless area the Mississippi valley was invaded at different times by ice sheets from the west,--the Kansan and the Iowan,--and again by the Illinoian ice sheet from the east. Again and again the Mississippi River was pushed to one side or the other of its path. The ancient channel which it held along the Illinoian ice front has been traced through southeastern Iowa for many miles.
BENEFITS OF GLACIATION. Like the driftless area, the preglacial surface over which the ice advanced seems to have been well dissected after the late Tertiary uplifts, and to have been carved in many places to steep valley slopes and rugged hills. The retreating ice sheets, which left smooth plains and gently rolling country over the wide belt where glacial deposition exceeded glacial erosion, have made travel and transportation easier than they otherwise would have been.
The preglacial subsoils were residual clays and sands, composed of the insoluble elements of the country rock of the locality, with some minglings of its soluble parts still undissolved. The glacial subsoils are made of rocks of many kinds, still undecayed and largely ground to powder. They thus contain an inexhaustible store of the mineral foods of plants, and in a form made easily ready for plant use.
On the preglacial hillsides the humus layer must have been comparatively thin, while the broad glacial plains have gathered deep black soils, rich in carbon and nitrogen taken from the atmosphere. To these soils and subsoils a large part of the wealth and prosperity of the glaciated regions of our country must be attributed.
The ice invasions have also added very largely to the water power of the country. The rivers which in preglacial times were flowing over graded courses for the most part, were pushed from their old valleys and set to flow on higher levels, where they have developed waterfalls and rapids. This power will probably be fully utilized long before the coal beds of the country are exhausted, and will become one of the chief sources of the national wealth.
THE RECENT EPOCH. The deposits laid since glacial times graduate into those now forming along the ocean sh.o.r.es, on lake beds, and in river valleys. Slow and comparatively slight changes, such as the warpings of the region of the Great Lakes, have brought about the geographical conditions of the present. The physical history of the Recent epoch needs here no special mention.
THE LIFE OF THE QUATERNARY
During the entire Quaternary, invertebrates and plants suffered little change in species,--so slowly are these ancient and comparatively simple organisms modified. The Mammalia, on the other hand, have changed much since the beginning of Quaternary time: the various species of the present have been evolved, and some lines have become extinct. These highly organized vertebrates are evidently less stable than are lower types of animals, and respond more rapidly to changes in the environment.
PLEISTOCENE MAMMALS. In the Pleistocene the Mammalia reached their culmination both in size and in variety of forms, and were superior in both these respects to the mammals of to-day. In Pleistocene times in North America there were several species of bison,--one whose widespreading horns were ten feet from tip to tip,--a gigantic moose elk, a giant rodent (Castoroides) five feet long, several species of musk oxen, several species of horses,-- more akin, however, to zebras than to the modern horse,--a huge lion, several saber-tooth tigers, immense edentates of several genera, and largest of all the mastodon and mammoth.
The largest of the edentates was the Megatherium, a. clumsy ground sloth bigger than a rhinoceros. The bones of the Megatherium are extraordinarily ma.s.sive,--the thigh bone being thrice as thick as that of an elephant,--and the animal seems to have been well able to get its living by overthrowing trees and stripping off their leaves. The Glyptodon was a mailed edentate, eight feet long, resembling the little armadillo. These edentates survived from Tertiary times, and in the warmer stages of the Pleistocene ranged north as far as Ohio and Oregon.
The great proboscidians of the Glacial epoch were about the size of modern elephants, and somewhat smaller than their ancestral species in the Pliocene. The MASTODON ranged over all North America south of Hudson Bay, but had become extinct in the Old World at the end of the Tertiary. The elephants were represented by the MAMMOTH, which roamed in immense herds from our middle states to Alaska, and from Arctic Asia to the Mediterranean and Atlantic.
It is an oft-told story how about a century ago, near the Lena River in Siberia, there was found the body of a mammoth which had been safely preserved in ice for thousands of years, how the flesh was eaten by dogs and bears, and how the eyes and hoofs and portions of the hide were taken with the skeleton to St.