BestLightNovel.com

The Glaciers of the Alps Part 33

The Glaciers of the Alps - BestLightNovel.com

You’re reading novel The Glaciers of the Alps Part 33 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

[B] 'Proceedings of the Royal Inst.i.tution,' vol. ii. p. 324.

THE RIPPLE-THEORY OF THE VEINED STRUCTURE.

(29.)

[Sidenote: THEORY STATED.]

[Sidenote: THEORY EXAMINED.]



The a.s.sumption of oblique sliding, and the production thereby of the marginal structure, have, however, been fortified by considerations of an ingenious and very interesting kind. "How," I have asked, "can the oblique structure persist across the lines of greatest differential motion throughout the length of the glacier?" But here I am met by another question which at first sight might seem equally unanswerable--"How do ripple-marks on the surface of a flowing river, which are nothing else than lines of differential motion of a low order, cross the river from the sides obliquely, while the direction of greatest differential motion is parallel to the sides?" If I understand aright, this is the main argument of Professor Forbes in favour of his theory of the oblique marginal structure. It is first introduced in a note at page 378 of his 'Travels;' he alludes to it in a letter written the following year; in his paper in the 'Philosophical Transactions' he develops the theory. He there gives drawings of ripple-marks observed in smooth gutters after rain, and which he finds to be inclined to the course of the stream, exactly as the marginal structure is inclined to the side of the glacier. The explanation also embraces the case of an obstacle placed in the centre of a river. "A case," writes Professor Forbes, "parallel to the last mentioned, where a fixed obstacle cleaves a descending stream, and leaves its trace in a fan-shaped tail, is well known in several glaciers, as in that at Ferpecle, and the Glacier de Lys on the south side of Monte Rosa; particularly the last, where the veined structure follows the law just mentioned." In his Twelfth Letter he also refers to the ripples "as exactly corresponding to the position of the icy bands." In his letter to Dr. Whewell, published in the 'Occasional Papers,' page 58, he writes as follows:--"The same is remarkably shown in the case of a stream of water, for instance a mill-race. Although the movement of the water, as shown by floating bodies, is exceedingly nearly (for small velocities sensibly) parallel to the sides, yet the variation of the speed from the side to the centre of the stream occasions a _ripple_, or molecular discontinuity, which inclines forwards from the sides to the centre of the stream at an angle with the axis depending on the ratio of the central and lateral velocity. The veined structure of the ice corresponds to the ripple of the water, a molecular discontinuity whose measure is not comparable to the actual velocity of the ice; and therefore the general movement of the glacier, as indicated by the moraines, remains sensibly parallel to the sides." This theory opens up to us a series of interesting and novel considerations which I think will repay the reader's attention. If the ripples in the water and the veins in the ice be due to the same mechanical cause, when we develop clearly the origin of the former we are led directly to the explanation of the latter. I shall now endeavour to reduce the ripples to their mechanical elements.

The Messrs. Weber have described in their 'Wellenlehre' an effect of wave-motion which it is very easy to obtain. When a boat moves through perfectly smooth water, and the rower raises his oar out of the water, drops trickle from its blade, and each drop where it falls produces a system of concentric rings. The circular waves as they widen become depressed, and, if the drops succeed each other with sufficient speed, the rings cross each other at innumerable points. The effect of this is to blot out more or less completely all the circles, and to leave behind two straight divergent ripple-lines, which are tangents to all the external rings; being in fact formed by the intersections of the latter, as a caustic in optics is formed by the intersection of luminous rays. Fig. 48, which is virtually copied from M. Weber, will render this description at once intelligible. The boat is supposed to move in the direction of the arrow, and as it does so the rings which it leaves behind widen, and produce the divergence of the two straight resultant lines of ripple.

[Sidenote: RIPPLES DEDUCED FROM RINGS.]

[Ill.u.s.tration: Fig. 48. Diagram explanatory of the formation of Ripples.]

The more quickly the drops succeed each other, the more frequent will be the intersections of the rings; but as the speed of succession augments we approach the case of _a continuous vein_ of liquid; and if we suppose the continuity to be perfectly established, the ripples will still be produced with a smooth s.p.a.ce between them as before. This experiment may indeed be made with a well-wetted oar, which on its first emergence from the water sends into it a continuous liquid vein. The same effect is produced when we subst.i.tute for the stream of liquid a solid rod--a common walking-stick for example. A water-fowl swimming in calm water produces two divergent lines of ripples of a similar kind.

We have here supposed the water of the lake to be at rest, and the liquid vein or the solid rod to move through it; but precisely the same effect is produced if we suppose the rod at rest and the liquid in motion. Let a post, for example, be fixed in the middle of a flowing river; diverging from that post right and left we shall have lines of ripples exactly as if the liquid were at rest and the post moved through it with the velocity of the river. If the same post be placed close to the bank, so that _one_ of its edges only shall act upon the water, diverging from that edge we shall have a _single_ line of ripples which will cross the river obliquely towards its centre. It is manifest that any other obstacle will produce the same effect as our hypothetical post. In the words of Professor Forbes, "the slightest prominence of any kind in the wall of such a conduit, a bit of wood or a tuft of gra.s.s, is sufficient to produce a well-marked ripple-streak from the side towards the centre."

[Sidenote: MEASURE OF DIVERGENCE OF RIPPLES.]

The foregoing considerations show that the divergence of the two lines of ripples from the central post, and of the single line in the case of the lateral post, have their mechanical element, if I may use the term, in the experiment of the Messrs. Weber. In the case of a swimming duck the connexion between the diverging lines of ripples and the propagation of rings round a disturbed point is often very prettily shown. When the creature swims with vigour the little foot with which it strikes the water often comes sufficiently near to the surface to produce an elevation,--sometimes indeed emerging from the water altogether. Round the point thus disturbed rings are immediately propagated, and the widening of those rings is _the exact measure of the divergence of the ripple lines_. The rings never cross the lines;--the lines never retreat from the rings.

[Sidenote: RIPPLES AND VEINS DUE TO DIFFERENT CAUSES.]

If we compare the mechanical actions here traced out with those which take place upon a glacier, I think it will be seen that the a.n.a.logy between the ripples and the veined structure is entirely superficial.

How the structure ascribed to the Glacier de Lys is to be explained I do not know, for I have never seen it; but it seems impossible that it could be produced, as ripples are, by a fixed obstacle which "cleaves a descending stream." No one surely will affirm that glacier-ice so closely resembles a fluid as to be capable of transmitting undulations, as water propagates rings round a disturbed point. The difficulty of such a supposition would be augmented by taking into account the motion of the _individual liquid particles_ which go to form a ripple; for the Messrs. Weber have shown that these move in closed curves, describing orbits more or less circular. Can it be supposed that the particles of ice execute a motion of this kind? If so, their orbital motions may be easily calculated, being deducible from the motion of the glacier compounded with the inclination of the veins. If so important a result could be established, all glacier theories would vanish in comparison with it.

[Sidenote: POSITION OF RIPPLES NOT THAT OF STRUCTURE.]

There is another interesting point involved in the pa.s.sage above quoted.

Professor Forbes considers that the ripple is occasioned by the variation of speed from the side to the centre of the stream, and that its _inclination_ depends on the ratio of the central and lateral velocity. If I am correct in the above a.n.a.lysis, this cannot be the case. The inclination of the ripple depends solely on the ratio of the river's translatory motion to the velocity of its wave-motion. Were the lateral and central velocities alike, a momentary disturbance at the side would produce a _straight_ ripple-mark, whose inclination would be compounded of the two elements just mentioned. If the motion of the water vary from side to centre, the velocity of wave-propagation remaining constant, the inclination of the ripple will also vary, that is to say, we shall have a _curved_ ripple instead of a straight one.

This, of course, is the case which we find in Nature, but the curvature of such ripples is totally different from that of the veined structure.

Owing to the quicker translatory movement, the ripples, as they approach the centre, tend more to parallelism with the direction of the river; and after having pa.s.sed the centre, and reached the slower water near the opposite side, their inclination to the axis gradually augments.

Thus the ripples from the two sides form a pair of symmetric curves, which cross each other at the centre, and possess the form _a o b_, _c o d_, shown in Fig. 49. A similar pair of curves would be produced by the reflection of these. Knowing the variation of motion from side to centre, any competent mathematician could find the equation of the ripple-curves; but it would be out of place for me to attempt it here.

[Ill.u.s.tration: Fig. 49. Diagram explanatory of the formation of Ripples.]

THE VEINED STRUCTURE AND PRESSURE.

(30.)

If a prism of gla.s.s be pressed by a sufficient weight, the particles in the line of pressure will be squeezed more closely together, while those at right angles to this line will be forced further apart. The existence of this state of strain may be demonstrated by the action of such squeezed gla.s.s upon polarised light. It gives rise to colours, and it is even possible to infer from the tint the precise amount of pressure to which the gla.s.s is subjected. M. Wertheim indeed has most ably applied these facts to the construction of a dynamometer, or instrument for measuring pressures, exceeding in accuracy any hitherto devised.

When the pressure applied becomes too great for the gla.s.s to sustain, it flies to pieces. But let us suppose the sides of the prism defended by an extremely strong jacket, in which the prism rests like a closely-fitting plug, and which yields only when a pressure more than sufficient to crush the gla.s.s is applied. Let the pressure be gradually augmented until this point is attained; afterwards both the gla.s.s and its jacket will shorten and widen; the jacket will yield laterally, being pushed out with extreme slowness by the gla.s.s within.

[Sidenote: POSSIBLE EXPERIMENT WITH GLa.s.s PRISM.]

Now I believe that it would be possible to make this experiment in such a manner that the gla.s.s should be _flattened_, partly through rupture, and partly through lateral molecular yielding; the prism would change its form, and yet present a firmly coherent ma.s.s when removed from its jacket. I have never made the experiment; n.o.body has, as far as I know; but experiments of this kind are often made by Nature. In the Museum of the Government School of Mines, for example, we have a collection of quartz stones placed there by Mr. Salter, and which have been subjected to enormous pressure in the neighbourhood of a fault. These rigid pebbles have, in some cases, been squeezed against each other so as to produce mutual flattening and indentation. Some of them have yielded along planes pa.s.sing through them, as if one half had slidden over the other; but the reattachment is very strong. Some of the larger stones, moreover, which have endured pressure at a particular point, are fissured radially around this point. In short, the whole collection is a most instructive example of the manner and extent to which one of the most rigid substances in Nature can yield on the application of a sufficient force.

[Sidenote: POSSIBLE EXPERIMENT WITH PRISM OF ICE.]

Let a prism of ice at 32 be placed in a similar jacket to that which we have supposed to envelop the gla.s.s prism. The ice yields to the pressure with incomparably greater ease than the gla.s.s; and if the force be slowly applied, the lateral yielding will far more closely resemble that of a truly plastic body. Supposing such a piece of ice to be filled with numerous small air-bubbles, the tendency of the pressure would be to flatten these bubbles, and to squeeze them out of the ice. Were the substance perfectly h.o.m.ogeneous, this flattening and expulsion would take place uniformly throughout its entire ma.s.s; but I believe there is no such h.o.m.ogeneous substance in nature;--the ice will yield at different places, leaving between them s.p.a.ces which are comparatively unaffected by the pressure. From the former s.p.a.ces the air-bubbles will be more effectually expelled; and I have no doubt that the result of such pressure acting upon ice so protected would be to produce a laminated structure somewhat similar to that which it produces in those bodies which exhibit slaty cleavage.

[Sidenote: LAMINATION PRODUCED BY PRESSURE.]

[Sidenote: NO SLIDING OF FILAMENTS.]

I also think it certain that, in this lateral displacement of the particles, these must move past each other. This is an idea which I have long entertained, as the following pa.s.sage taken from the paper published by Mr. Huxley and myself will prove:--"Three princ.i.p.al causes may operate in producing cleavage: first, the reducing of surfaces of weak cohesion to parallel planes; second, the flattening of minute cavities; and third, the weakening of cohesion by tangential action. The third action is exemplified by the state of the rails near a station where a break is habitually applied to a locomotive. In this case, while the weight of the train presses vertically, its motion tends to cause longitudinal sliding of the particles of the rail. Tangential action does not, however, necessarily imply a force of the latter kind. When a solid cylinder an inch in height is squeezed to a vertical cake a quarter of an inch in height, it is impossible, physically speaking, that the particles situated in the same vertical line shall move laterally with the same velocity; but if they do not, the cohesion between them will be weakened or ruptured. The pressure, however, will produce new contact; and if this have a cohesive value equal to that of the old contact, no cleavage from this cause can arise. The relative capacities of different substances for cleavage appear to depend in a great measure upon their different properties in this respect. In b.u.t.ter, for example, the new attachments are equal, or nearly so, to the old, and the cleavage is consequently indistinct; in wax this does not appear to be the case, and hence may arise in a great degree the perfection of its cleavage. The further examination of this subject promises interesting results." I would dwell upon this point the more distinctly as the advocates of differential motion may deem it to be in their favour; but it appears to me that the mechanical conceptions implied in the above pa.s.sage are totally different from theirs. If they think otherwise, then it seems to me that they should change the expressions which refer the differential motion to a "drag" towards the centre, and the structure to the sliding of "filaments" past each other in consequence of this drag. Such filamentary sliding may take place in a truly viscous body, but it does not take place in ice.

In one particular the ice resembles the b.u.t.ter referred to in the above quotation; for its new attachments appear to be equal to the old, and this, I think, is to be ascribed to its perfect regelation. As justly pointed out by Mr. John Ball, the veined ice of a glacier, if unweathered, shows no tendency to cleave; for though the expulsion of the air-bubbles has taken place, the reattachment of the particles is so firm as to abolish all evidence of cleavage. When the ice, on the contrary, is weathered, the plates become detached, and I have often been able to split such ice into thin tablets having an area of two or three square feet.

In his Thirteenth Letter Professor Forbes throws out a new and possibly a pregnant thought in connexion with the veins. If I understand him aright--and I confess it is usually a matter of extreme difficulty with me to make sure of this--he there refers the veins, not to the expulsion of the air from the ice, but to its redistribution. The pressure produces "_lines of tearing_ in which the air is distributed in the form of regular globules." I do not know what might be made of this idea if it were developed, but at present I do not see how the supposed action could produce the blue bands; and I agree with Professor Wm. Thomson in regarding the explanation as improbable.[A]

FOOTNOTES:

[A] For an extremely ingenious view of the origin of the veined structure, I would refer to a paper by Professor Thomson, in the 'Proceedings of the Royal Society,' April, 1858.

THE VEINED STRUCTURE AND THE LIQUEFACTION OF ICE BY PRESSURE.

(31.)

I have already noticed an important fact for which we are indebted to Mr. James Thomson, and have referred to the original communications on the subject. I shall here place the physical circ.u.mstances connected with this fact before my reader in the manner which I deem most likely to interest him.

[Sidenote: INFLUENCE OF PRESSURE ON BOILING POINT.]

When a liquid is heated, the attraction of the molecules operates against the action of the heat, which tends to tear them asunder. At a certain point the force of heat triumphs, the cohesion is overcome, and the liquid boils. But supposing we a.s.sist the attraction of the molecules by applying an external pressure, the difficulty of tearing them asunder will be increased; more heat will be required for this purpose; and hence we say that the _boiling point_ of the liquid has been _elevated_ by the pressure.

[Sidenote: INFLUENCE OF PRESSURE ON FUSING POINT.]

If molten sulphur be poured into a bullet-mould, it will be found on cooling to contract, so as to leave a large hollow s.p.a.ce in the middle of each sphere. Cast musket-bullets are thus always found to possess a small cavity within them produced by the contraction of the lead.

Conceive the bullet placed within its mould and the latter heated; to produce fusion it is necessary that the sulphur or the lead should _swell_. Here, as in the case of the heated water, the tendency to expand is opposed by the attraction of the molecules; with a certain amount of heat however this attraction is overcome and the solid _melts_. But suppose we a.s.sist the molecular attraction by a suitable force applied externally, a greater amount of heat than before will be necessary to tear them asunder; and hence we say that the _fusing point_ has been _elevated_ by the pressure. This fact has been experimentally established by Messrs. Hopkins and Fairbairn, who applied to spermaceti and other substances pressures so great as to raise their points of fusion a considerable number of degrees.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Glaciers of the Alps Part 33 summary

You're reading The Glaciers of the Alps. This manga has been translated by Updating. Author(s): John Tyndall. Already has 597 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com