BestLightNovel.com

More Letters of Charles Darwin Volume Ii Part 14

More Letters of Charles Darwin - BestLightNovel.com

You’re reading novel More Letters of Charles Darwin Volume Ii Part 14 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

LETTER 485. TO C. LYELL. [November 6th, 1849].

I have been deeply interested in your letter, and so far, at least, worthy of the time it must have cost you to write it. I have not much to say. I look at the whole question as settled. Santorin is splendid!

it is conclusive! it is perfect! (485/1. "The Gulf of Santorin, in the Grecian Archipelago, has been for two thousand years a scene of active volcanic operations. The largest of the three outer islands of the groups (to which the general name of Santorin is given) is called Thera (or sometimes Santorin), and forms more than two-thirds of the circuit of the Gulf" ("Principles of Geology," Volume II., Edition X., London, 1868, page 65). Lyell attributed "the moderate slope of the beds in Thera...to their having originally descended the inclined flanks of a large volcanic cone..."; he refuted the theory of "Elevation Craters" by Leopold von Buch, which explained the slope of the rocks in a volcanic mountain by a.s.suming that the inclined beds had been originally horizontal and subsequently tilted by an explosion.) You have read Dufrenoy in a hurry, I think, and added to the difficulty--it is the whole hill or "colline" which is composed of tuff with cross-stratification; the central boss or "monticule" is simply trachyte. Now, I have described one tuff crater at Galapagos (page 108) (485/2. The pages refer to Darwin's "Geological Observations on the Volcanic Islands, etc." 1844.) which has broken through a great solid sheet of basalt: why should not an irregular ma.s.s of trachyte have been left in the middle after the explosion and emission of mud which produced the overlying tuff? Or, again, I see no difficulty in a ma.s.s of trachyte being exposed by subsequent dislocations and bared or cleaned by rain. At Ascension (page 40), subsequent to the last great aeriform explosion, which has covered the country with fragments, there have been dislocations and a large circular subsidence...Do not quote Banks' case (485/3. This refers to Banks' Cove: see "Volcanic Islands," page 107.) (for there has been some denudation there), but the "elliptic one"

(page 105), which is 1,500 yards (three-quarters of a nautical mile) in internal diameter...and is the very one the inclination of whose mud stream on tuff strata I measured (before I had ever heard the name Dufrenoy) and found varying from 25 to 30 deg. Albemarle Island, instead of being a crater of elevation, as Von Buch foolishly guessed, is formed of four great subaerial basaltic volcanoes (page 103), of one of which you might like to know the external diameter of the summit or crater was above three nautical miles. There are no "craters of denudation"

at Galapagos. (485/4. See Lyell "On Craters of Denudation, with Observations on the Structure and Growth of Volcanic Cones," "Quart.



Journ. Geol. Soc." Volume VI., 1850, page 207.)

I hope you will allude to Mauritius. I think this is the instance on the largest scale of any known, though imperfectly known.

If I were you I would give up consistency (or, at most, only allude in note to your old edition) and bring out the Craters of Denudation as a new view, which it essentially is. You cannot, I think, give it prominence as a novelty and yet keep to consistency and pa.s.sages in old editions. I should grudge this new view being smothered in your address, and should like to see a separate paper. The one great channel to Santorin and Palma, etc., etc., is just like the one main channel being kept open in atolls and encircling barrier reefs, and on the same principle of water being driven in through several shallow breaches.

I of course utterly reprobate my wild notion of circular elevation; it is a satisfaction to me to think that I perceived there was a screw loose in the old view, and, so far, I think I was of some service to you.

Depend on it, you have for ever smashed, crushed, and abolished craters of elevation. There must be craters of engulfment, and of explosion (mere modifications of craters of eruption), but craters of denudation are the ones which have given rise to all the discussions.

Pray give my best thanks to Lady Lyell for her translation, which was as clear as daylight to me, including "leglessness."

LETTER 486. TO C. LYELL.

Down [November 20th, 1849].

I remembered the pa.s.sage in E. de B. [Elie de Beaumont] and have now re-read it. I have always and do still entirely disbelieve it; in such a wonderful case he ought to have hammered every inch of rock up to actual junction; he describes no details of junction, and if I were in your place I would absolutely dispute the fact of junction (or articulation as he oddly calls it) on such evidence. I go farther than you; I do not believe in the world there is or has been a junction between a dike and stream of lava of exact shape of either (1) or (2) Figure 2].

(Figures 2, 3 and 4.)

If dike gave immediate origin to volcanic vent we should have craters of [an] elliptic shape [Figure 3]. I believe that when the molten rock in a dike comes near to the surface, some one two or three points will always certainly chance to afford an easier pa.s.sage upward to the actual surface than along the whole line, and therefore that the dike will be connected (if the whole were bared and dissected) with the vent by a column or cone (see my elegant drawing) of lava [Figure 4]. I do not doubt that the dikes are thus indirectly connected with eruptive vents.

E. de B. seems to have observed many of his T; now without he supposes the whole line of fissure or dike to have poured out lava (which implies, as above remarked, craters of an elliptic or almost linear shape) on both sides, how extraordinarily improbable it is, that there should have been in a single line of section so many intersections of points eruption; he must, I think, make his orifices of eruption almost linear or, if not so, astonis.h.i.+ngly numerous. One must refer to what one has seen oneself: do pray, when you go home, look at the section of a minute cone of eruption at the Galapagos, page 109 (486/1. "Geological Observations on Volcanic Islands." London, 1890, page 238.), which is the most perfect natural dissection of a crater which I have ever heard of, and the drawing of which you may, I a.s.sure you, trust; here the arching over of the streams as they were poured out over the lip of the crater was evident, and are now thus seen united to the central irregular column. Again, at St. Jago I saw some horizontal sections of the bases of small craters, and the sources or feeders were circular. I really cannot entertain a doubt that E. de B. is grossly wrong, and that you are right in your view; but without most distinct evidence I will never admit that a dike joins on rectangularly to a stream of lava. Your argument about the perpendicularity of the dike strikes me as good.

The map of Etna, which I have been just looking at, looks like a sudden falling in, does it not? I am not much surprised at the linear vent in Santorin (this linear tendency ought to be difficult to a circular-crater-of-elevation-believer), I think Ab.i.+.c.h (486/2.

"Geologische Beobachtungen uber die vulkanischen Erscheinungen und Bildungen in Unter- und Mittel-Italien." Braunschweig, 1841.) describes having seen the same actual thing forming within the crater of Vesuvius.

In such cases what outline do you give to the upper surface of the lava in the dike connecting them? Surely it would be very irregular and would send up irregular cones or columns as in my above splendid drawing.

At the Royal on Friday, after more doubt and misgiving than I almost ever felt, I voted to recommend Forbes for Royal Medal, and that view was carried, Sedgwick taking the lead.

I am glad to hear that all your party are pretty well. I know from experience what you must have gone through. From old age with suffering death must be to all a happy release. (486/3. This seems to refer to the death of Sir Charles Lyell's father, which occurred on November 8th, 1849.)

I saw Dan Sharpe the other day, and he told me he had been working at the mica schist (i.e. not gneiss) in Scotland, and that he was quite convinced my view was right. You are wrong and a heretic on this point, I know well.

LETTER 487. TO C.H.L. WOODD. Down, March 4th [1850].

(487/1. The paper was sent in MS., and seems not to have been published.

Mr. Woodd was connected by marriage with Mr. Darwin's cousin, the late Rev. W. Darwin Fox. It was perhaps in consequence of this that Mr.

Darwin proposed Mr. Woodd for the Geological Society.)

I have read over your paper with attention; but first let me thank you for your very kind expressions towards myself. I really feel hardly competent to discuss the questions raised by your paper; I feel the want of mathematical mechanics. All such problems strike me as awfully complicated; we do not even know what effect great pressure has on r.e.t.a.r.ding liquefaction by heat, nor, I apprehend, on expansion. The chief objection which strikes me is a doubt whether a ma.s.s of strata, when heated, and therefore in some slight degree at least softened, would bow outwards like a bar of metal. Consider of how many subordinate layers each great ma.s.s would be composed, and the mineralogical changes in any length of any one stratum: I should have thought that the strata would in every case have crumpled up, and we know how commonly in metamorphic strata, which have undergone heat, the subordinate layers are wavy and sinuous, which has always been attributed to their expansion whilst heated.

Before rocks are dried and quarried, manifold facts show how extremely flexible they are even when not at all heated. Without the bowing out and subsequent filling in of the roof of the cavity, if I understand you, there would be no subsidence. Of course the crumpling up of the strata would thicken them, and I see with you that this might compress the underlying fluidified rock, which in its turn might escape by a volcano or raise a weaker part of the earth's crust; but I am too ignorant to have any opinion whether force would be easily propagated through a viscid ma.s.s like molten rock; or whether such viscid ma.s.s would not act in some degree like sand and refuse to transmit pressure, as in the old experiment of trying to burst a piece of paper tied over the end of a tube with a stick, an inch or two of sand being only interposed. I have always myself felt the greatest difficulty in believing in waves of heat coming first to this and then to that quarter of the world: I suspect that heat plays quite a subordinate part in the upward and downward movements of the earth's crust; though of course it must swell the strata where first affected. I can understand Sir J. Herschel's manner of bringing heat to unheated strata--namely, by covering them up by a mile or so of new strata, and then the heat would travel into the lower ones. But who can tell what effect this mile or two of new sedimentary strata would have from mere gravity on the level of the supporting surface? Of course such considerations do not render less true that the expansion of the strata by heat would have some effect on the level of the surface; but they show us how awfully complicated the phenomenon is. All young geologists have a great turn for speculation; I have burned my fingers pretty sharply in that way, and am now perhaps become over-cautious; and feel inclined to cavil at speculation when the direct and immediate effect of a cause in question cannot be shown. How neatly you draw your diagrams; I wish you would turn your attention to real sections of the earth's crust, and then speculate to your heart's content on them; I can have no doubt that speculative men, with a curb on, make far the best observers. I sincerely wish I could have made any remarks of more interest to you, and more directly bearing on your paper; but the subject strikes me as too difficult and complicated. With every good wish that you may go on with your geological studies, speculations, and especially observations...

LETTER 488. TO C. LYELL. Down, March 24th [1853].

I have often puzzled over Dana's case, in itself and in relation to the trains of S. American volcanoes of different heights in action at the same time (page 605, Volume V. "Geological Transactions." (488/1. "On the Connection of certain Volcanic Phenomena in South America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated" ("Trans. Geol. Soc."

Volume V., page 601, 1840). On page 605 Darwin records instances of the simultaneous activity after an earthquake of several volcanoes in the Cordillera.)) I can throw no light on the subject. I presume you remember that Hopkins (488/2. See "Report on the Geological Theories of Elevation and Earthquakes," by W. Hopkins, "Brit. a.s.soc. Rep." 1847, page 34.) in some one (I forget which) of his papers discusses such cases, and urgently wishes the height of the fluid lava was known in adjoining volcanoes when in contemporaneous action; he argues vehemently against (as far as I remember) volcanoes in action of different heights being connected with one common source of liquefied rock. If lava was as fluid as water, the case would indeed be hopeless; and I fancy we should be led to look at the deep-seated rock as solid though intensely hot, and becoming fluid as soon as a crack lessened the tension of the super-inc.u.mbent strata. But don't you think that viscid lava might be very slow in communicating its pressure equally in all directions? I remember thinking strongly that Dana's case within the one crater of Kilauea proved too much; it really seems monstrous to suppose that the lava within the same crater is not connected at no very great depth.

When one reflects on (and still better sees) the enormous ma.s.ses of lava apparently shot miles high up, like cannon-b.a.l.l.s, the force seems out of all proportion to the mere gravity of the liquefied lava; I should think that a channel a little straightly or more open would determine the line of explosion, like the mouth of a cannon compared to the touch-hole.

If a high-pressure boiler was cracked across, no one would think for a moment that the quant.i.ty of water and steam expelled at different points depended on the less or greater height of the water within the boiler above these points, but on the size of the crack at these points; and steam and water might be driven out both at top and bottom. May not a volcano be likened to a protruding and cracked portion on a vast natural high-pressure boiler, formed by the surrounding area of country? In fact, I think my simile would be truer if the difference consisted only in the cracked case of the boiler being much thicker in some parts than in others, and therefore having to expel a greater thickness or depth of water in the thicker cracks or parts--a difference of course absolutely as nothing.

I have seen an old boiler in action, with steam and drops of water spurting out of some of the rivet-holes. No one would think whether the rivet-holes pa.s.sed through a greater or less thickness of iron, or were connected with the water higher or lower within the boiler, so small would the gravity be compared with the force of the steam. If the boiler had been not heated, then of course there would be a great difference whether the rivet-holes entered the water high or low, so that there was greater or less pressure of gravity. How to close my volcanic rivet-holes I don't know.

I do not know whether you will understand what I am driving at, and it will not signify much whether you do or not. I remember in old days (I may mention the subject as we are on it) often wis.h.i.+ng I could get you to look at continental elevations as THE phenomenon, and volcanic outbursts and tilting up of mountain chains as connected, but quite secondary, phenomena. I became deeply impressed with the truth of this view in S. America, and I do not think you hold it, or if so make it clear: the same explanation, whatever it may be, which will account for the whole coast of Chili rising, will and must apply to the volcanic action of the Cordillera, though modified no doubt by the liquefied rock coming to the surface and reaching water, and so [being] rendered explosive. To me it appears that this ought to be borne in mind in your present subject of discussion. I have written at too great length; and have amused myself if I have done you no good--so farewell.

LETTER 489. TO C. LYELL. Down, July 5th [1856].

I am very much obliged for your long letter, which has interested me much; but before coming to the volcanic cosmogony I must say that I cannot gather your verdict as judge and jury (and not as advocate) on the continental extensions of late authors (489/1. See "Life and Letters," II., page 74; Letter to Lyell, June 25th, 1856: also letters in the sections of the present work devoted to Evolution and Geographical Distribution.), which I must grapple with, and which as yet strikes me as quite unphilosophical, inasmuch as such extensions must be applied to every oceanic island, if to any one, as to Madeira; and this I cannot admit, seeing that the skeletons, at least, of our continents are ancient, and seeing the geological nature of the oceanic islands themselves. Do aid me with your judgment: if I could honestly admit these great [extensions], they would do me good service.

With respect to active volcanic areas being rising areas, which looks so pretty on the coral maps, I have formerly felt "uncomfortable" on exactly the same grounds with you, viz. maritime position of volcanoes; and still more from the immense thicknesses of Silurian, etc., volcanic strata, which thicknesses at first impress the mind with the idea of subsidence. If this could be proved, the theory would be smashed; but in deep oceans, though the bottom were rising, great thicknesses of submarine lava might acc.u.mulate. But I found, after writing Coral Book, cases in my notes of submarine vesicular lava-streams in the upper ma.s.ses of the Cordillera, formed, as I believe, during subsidence, which staggered me greatly. With respect to the maritime position of volcanoes, I have long been coming to the conclusion that there must be some law causing areas of elevation (consequently of land) and of subsidence to be parallel (as if balancing each other) and closely approximate; I think this from the form of continents with a deep ocean on one side, from coral map, and especially from conversations with you on immense subsidences of the Carboniferous and [other] periods, and yet with continued great supply of sediment. If this be so, such areas, with opposite movements, would probably be separated by sets of parallel cracks, and would be the seat of volcanoes and tilts, and consequently volcanoes and mountains would be apt to be maritime; but why volcanoes should cling to the rising edge of the cracks I cannot conjecture. That areas with extinct volcanic archipelagoes may subside to any extent I do not doubt.

Your view of the bottom of Atlantic long sinking with continued volcanic outbursts and local elevations at Madeira, Canaries, etc., grates (but of course I do not know how complex the phenomena are which are thus explained) against my judgment; my general ideas strongly lead me to believe in elevatory movements being widely extended. One ought, I think, never to forget that when a volcano is in action we have distinct proof of an action from within outwards. Nor should we forget, as I believe follows from Hopkins (489/2. "Researches in Physical Geology,"

W. Hopkins, "Trans. Phil. Soc. Cambridge," Volume VI., 1838. See also "Report on the Geological Theories of Elevation and Earthquakes," W.

Hopkins, "Brit. a.s.soc. Rep." page 33, 1847 (Oxford meeting).), and as I have insisted in my Earthquake paper, that volcanoes and mountain chains are mere accidents resulting from the elevation of an area, and as mountain chains are generally long, so should I view areas of elevation as generally large. (489/3. "On the Connexion of certain Volcanic Phenomena in S. America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated," "Trans. Geol. Soc." Volume V., page 601, 1840. "Bearing in mind Mr. Hopkins' demonstration, if there be considerable elevation there must be fissures, and, if fissures, almost certainly unequal upheaval, or subsequent sinking down, the argument may be finally thus put: mountain chains are the effects of continental elevations; continental elevations and the eruptive force of volcanoes are due to one great motive, now in progressive action..." (loc. cit., page 629).)

Your old original view that great oceans must be sinking areas, from there being causes making land and yet there being little land, has always struck me till lately as very good. But in some degree this starts from the a.s.sumption that within periods of which we know anything there was either a continent in such areas, or at least a sea-bottom of not extreme depth.

LETTER 490. TO C. LYELL. King's Head Hotel, Sandown, Isle of Wight, July 18th [1858].

I write merely to thank you for the abstract of the Etna paper. (490/1.

"On the Structure of Lavas which have Consolidated on Steep Slopes, with Remarks on the Mode of Origin of Mount Etna and on the Theory of 'Craters of Elevation,'" by C. Lyell, "Phil. Trans. R. Soc." Volume CXLVIII., page 703, 1859.) It seems to me a very grand contribution to our volcanic knowledge. Certainly I never expected to see E. de B.'s [Elie de Beaumont] theory of slopes so completely upset. He must have picked out favourable cases for measurement. And such an array of facts he gives! You have scotched, and will see die, I now think, the Crater of Elevation theory. But what vitality there is in a plausible theory!

(490/2. The rest of this letter is published in "Life and Letters," II., page 129.)

LETTER 491. TO C. LYELL. Down, November 25th [1860].

I have endeavoured to think over your discussion, but not with much success. You will have to lay down, I think, very clearly, what foundation you argue from--four parts (which seems to me exceedingly moderate on your part) of Europe being now at rest, with one part undergoing movement. How it is, that from this you can argue that the one part which is now moving will have rested since the commencement of the Glacial period in the proportion of four to one, I do not pretend to see with any clearness; but does not your argument rest on the a.s.sumption that within a given period, say two or three million years, the whole of Europe necessarily has to undergo movement? This may be probable or not so, but it seems to me that you must explain the foundation of your argument from s.p.a.ce to time, which at first, to me was very far from obvious. I can, of course, see that if you can make out your argument satisfactorily to yourself and others it would be most valuable. I can imagine some one saying that it is not fair to argue that the great plains of Europe and the mountainous districts of Scotland and Wales have been at all subjected to the same laws of movement. Looking to the whole world, it has been my opinion, from the very size of the continents and oceans, and especially from the enormous ranges of so many mountain-chains (resulting from cracks which follow from vast areas of elevation, as Hopkins argues (491/1. See "Report on the Geological Theories of Elevation and Earthquakes." by William Hopkins. "Brit. a.s.soc. Rep." 1847, pages 33-92; also the Anniversary Address to the Geological Society by W. Hopkins in 1852 ("Quart. Journ.

Geol. Soc." Volume VIII.); in this Address, pages lxviii et seq.) reference is made to the theory of elevation which rests on the supposition "of the simultaneous action of an upheaving force at every point of the area over which the phenomena of elevation preserve a certain character of continuity...The elevated ma.s.s...becomes stretched, and is ultimately torn and fissured in those directions in which the tendency thus to tear is greatest...It is thus that the complex phenomena of elevation become referable to a general and simple mechanical cause...")) and from other reasons, it has been my opinion that, as a general rule, very large portions of the world have been simultaneously affected by elevation or subsidence. I can see that this does not apply so strongly to broken Europe, any more than to the Malay Archipelago. Yet, had I been asked, I should have said that probably nearly the whole of Europe was subjected during the Glacial period to periods of elevation and of subsidence. It does not seem to me so certain that the kinds of partial movement which we now see going on show us the kind of movement which Europe has been subjected to since the commencement of the Glacial period. These notions are at least possible, and would they not vitiate your argument? Do you not rest on the belief that, as Scandinavia and some few other parts are now rising, and a few others sinking, and the remainder at rest, so it has been since the commencement of the Glacial period? With my notions I should require this to be made pretty probable before I could put much confidence in your calculations. You have probably thought this all over, but I give you the reflections which come across me, supposing for the moment that you took the proportions of s.p.a.ce at rest and in movement as plainly applicable to time. I have no doubt that you have sufficient evidence that, at the commencement of the Glacial period, the land in Scotland, Wales, etc., stood as high or higher than at present, but I forget the proofs.

Having burnt my own fingers so consumedly with the Wealden, I am fearful for you, but I well know how infinitely more cautious, prudent, and far-seeing you are than I am; but for heaven's sake take care of your fingers; to burn them severely, as I have done, is very unpleasant.

Your 2 1/2 feet for a century of elevation seems a very handsome allowance. can D. Forbes really show the great elevation of Chili? I am astounded at it, and I took some pains on the point.

I do not pretend to say that you may not be right to judge of the past movements of Europe by those now and recently going on, yet it somehow grates against my judgment,--perhaps only against my prejudices.

As a change from elevation to subsidence implies some great subterranean or cosmical change, one may surely calculate on long intervals of rest between. Though, if the cause of the change be ever proved to be astronomical, even this might be doubtful.

P.S.--I do not know whether I have made clear what I think probable, or at least possible: viz., that the greater part of Europe has at times been elevated in some degree equably; at other times it has all subsided equably; and at other times might all have been stationary; and at other times it has been subjected to various unequal movements, up and down, as at present.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

More Letters of Charles Darwin Volume Ii Part 14 summary

You're reading More Letters of Charles Darwin. This manga has been translated by Updating. Author(s): Charles Darwin. Already has 568 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com