The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom - BestLightNovel.com
You’re reading novel The Effects of Cross & Self-Fertilisation in the Vegetable Kingdom Part 23 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
NUMBER OF CAPSULES:
The London-crossed to the self-fertilised as 100 to 39.
The London-crossed to the intercrossed as 100 to 45.
The intercrossed to the self-fertilised as 100 to 67.
WEIGHT OF SEEDS PRODUCED BY AN EQUAL NUMBER OF PLANTS OF THE THREE LOTS.
WEIGHT OF SEED:
The London-crossed to the self-fertilised as 100 to 33.
The London-crossed to the intercrossed as 100 to 45.
The intercrossed to the self-fertilised as 100 to 73.
We thus see how greatly the offspring from the self-fertilised plants of the third generation crossed by a fresh stock, had their fertility increased, whether tested by the number of capsules produced or by the weight of the contained seeds; this latter being the more trustworthy method. Even the offspring from the self-fertilised plants crossed by one of the crossed plants of the same stock, notwithstanding that both lots had been long subjected to the same conditions, had their fertility considerably increased, as tested by the same two methods.
In conclusion it may be well to repeat in reference to the fertility of these three lots of plants, that their flowers were left freely exposed to the visits of insects and were undoubtedly crossed by them, as may be inferred from the large number of good capsules produced. These plants were all the offspring of the same mother-plants, and the strongly marked difference in their fertility must be attributed to the nature of the pollen employed in fertilising their parents; and the difference in the nature of the pollen must be attributed to the different treatment to which the pollen-bearing parents had been subjected during several previous generations.
COLOUR OF THE FLOWERS.
The flowers produced by the self-fertilised plants of the last or fourth generation were as uniform in tint as those of a wild species, being of a pale pink or rose colour. a.n.a.logous cases with Mimulus and Ipomoea, after several generations of self-fertilisation, have been already given. The flowers of the intercrossed plants of the fourth generation were likewise nearly uniform in colour. On the other hand, the flowers of the London-crossed plants, or those raised from a cross with the fresh stock which bore dark crimson flowers, varied extremely in colour, as might have been expected, and as is the general rule with seedling carnations. It deserves notice that only two or three of the London-crossed plants produced dark crimson flowers like those of their fathers, and only a very few of a pale pink like those of their mothers.
The great majority had their petals longitudinally and variously striped with the two colours,--the groundwork tint being, however, in some cases darker than that of the mother-plants.
12. MALVACEAE.--Hibiscus africa.n.u.s.
Many flowers on this Hibiscus were crossed with pollen from a distinct plant, and many others were self-fertilised. A rather larger proportional number of the crossed than of the self-fertilised flowers yielded capsules, and the crossed capsules contained rather more seeds.
The self-fertilised seeds were a little heavier than an equal number of the crossed seeds, but they germinated badly, and I raised only four plants of each lot. In three out of the four pots, the crossed plants flowered first.
TABLE 4/48. Hibiscus africa.n.u.s.
Heights of plants measured in inches.
Column 1: Number (Name) of Pot.
Column 2: Crossed Plants.
Column 3: Self-fertilised Plants.
Pot 1 : 13 4/8 : 16 2/8.
Pot 2 : 14 : 14.
Pot 3 : 8 : 7.
Pot 4 : 17 4/8 : 20 4/8.
Total : 53.00 : 57.75.
The four crossed plants average 13.25, and the four self-fertilised 14.43 inches in height; or as 100 to 109. Here we have the unusual case of self-fertilised plants exceeding the crossed in height; but only four pairs were measured, and these did not grow well or equally. I did not compare the fertility of the two lots.
CHAPTER V.
GERANIACEAE, LEGUMINOSAE, ONAGRACEAE, ETC.
Pelargonium zonale, a cross between plants propagated by cuttings does no good.
Tropaeolum minus.
Limnanthes douglasii.
Lupinus luteus and pilosus.
Phaseolus multiflorus and vulgaris.
Lathyrus odoratus, varieties of, never naturally intercross in England.
Pisum sativum, varieties of, rarely intercross, but a cross between them highly beneficial.
Sarothamnus scoparius, wonderful effects of a cross.
Ononis minutissima, cleistogene flowers of.
Summary on the Leguminosae.
Clarkia elegans.
Bartonia aurea.
Pa.s.siflora gracilis.
Apium petroselinum.
Scabiosa atropurpurea.
Lactuca sativa.
Specularia speculum.
Lobelia ramosa, advantages of a cross during two generations.
Lobelia fulgens.
Nemophila insignis, great advantages of a cross.
Borago officinalis.
Nolana prostrata.
13. GERANIACEAE.--Pelargonium zonale.
This plant, as a general rule, is strongly proterandrous, and is therefore adapted for cross-fertilisation by the aid of insects. (5/1.
Mr. J. Denny, a great raiser of new varieties of pelargoniums, after stating that this species is proterandrous, adds 'The Florist and Pomologist' January 1872 page 11, "there are some varieties, especially those with petals of a pink colour, or which possess a weakly const.i.tution, where the pistil expands as soon as or even before the pollen-bag bursts, and in which also the pistil is frequently short, so when it expands it is smothered as it were by the bursting anthers; these varieties are great seeders, each pip being fertilised by its own pollen. I would instance Christine as an example of this fact." We have here an interesting case of variability in an important functional point.) Some flowers on a common scarlet variety were self-fertilised, and other flowers were crossed with pollen from another plant; but no sooner had I done so, than I remembered that these plants had been propagated by cuttings from the same stock, and were therefore parts in a strict sense of the same individual. Nevertheless, having made the cross I resolved to save the seeds, which, after germinating on sand, were planted on the opposite sides of three pots. In one pot the quasi-crossed plant was very soon and ever afterwards taller and finer than the self-fertilised. In the two other pots the seedlings on both sides were for a time exactly equal; but when the self-fertilised plants were about 10 inches in height, they surpa.s.sed their antagonists by a little, and ever afterwards showed a more decided and increasing advantage; so that the self-fertilised plants, taken altogether, were somewhat superior to the quasi-crossed plants. In this case, as in that of the Origanum, if individuals which have been as.e.xually propagated from the same stock, and which have been long subjected to the same conditions, are crossed, no advantage whatever is gained.
Several flowers on another plant of the same variety were fertilised with pollen from the younger flowers on the same plant, so as to avoid using the old and long-shed pollen from the same flower, as I thought that this latter might be less efficient than fresh pollen. Other flowers on the same plant were crossed with fresh pollen from a plant which, although closely similar, was known to have arisen as a distinct seedling. The self-fertilised seeds germinated rather before the others; but as soon as I got equal pairs they were planted on the opposite sides of four pots.
TABLE 5/49. Pelargonium zonale.
Heights of plants measured in inches.
Column 1: Number (Name) of Pot.
Column 2: Crossed Plants.
Column 3: Self-fertilised Plants.