BestLightNovel.com

Dragons of the Air Part 8

Dragons of the Air - BestLightNovel.com

You’re reading novel Dragons of the Air Part 8 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

ULNA AND RADIUS

[Ill.u.s.tration: FIG. 42. COMPARISON OF THE BONES OF THE FORE-ARM IN BIRD AND ORNITHOSAUR]

The bones of the fore-arm are similar to each other in size, and if there be any difference between them the ulna is slightly the larger.

There is some evidence that in Rhamphorhynchus the upper end of the ulna was placed behind the radius, probably in consequence of the mode of attachment of those bones to the humerus. The ulna ab.u.t.ted towards the inner and lower border, while the radius was towards the upper border, consequent upon the twist in the humerus. This condition corresponds substantially with the arrangement in birds, but differs from birds in the relatively more important part taken by the radius in making the articulation. The bones are compared in Dimorphodon with the Golden Eagle drawn of the same size (Fig. 42). In birds the ulna supports the great feathers of the wing, and this may account for the size of the bone. The ulna is best seen at its proximal end in the specimens from the Cambridge Greensand, where there is a terminal olecranon ossification forming an oblique articulation, which frequently comes away and is lost. It is sometimes well preserved, and indicated by a suture. The examples of ulna from the Lias show a slight expansion of the bone at both ends, and at the distal end toward the wrist the articulation is well defined, where the bone joins the carpus. The larger specimens of the bone are broken. The distal articular surface is only connected with the proximal end of the bone in small specimens: it always shows on the one margin a concavity, followed by a prominent boss, and an oblique articulation beyond the boss. On the side towards the radius, on the lower end of the shaft there is an angular ridge, which marks the line along which the ulna overlaps the radius. The lower end of the radius has a simple, slightly convex articulation, somewhat bean-shaped. No rotation of these bones on each other was possible as in man. There is a third bone in the fore-arm. This bone, named the pteroid, is commonly seen in skeletons from Solenhofen. It was regarded by Von Meyer as having supported the wing membrane in flight.

Some writers have interpreted it as an essential part of the Pterodactyle skeleton, and Von Meyer thought that it might possibly indicate a fifth digit in the hand. The only existing structure at all like it is seen in the South African insectivorous mammal named _Chrysochloris capensis_, the golden mole, which also has three bones in the fore-arm, the third bone extending half-way up towards the humerus.



In that animal the third bone appears to be behind the others and adjacent to the ulna. In the German fossils the pteroid articulated with a separate carpal or metacarpal bone, placed on the side of the arm adjacent to the radius, and the radius is always more inward than the ulna. If the view suggested by Von Meyer is adopted, this bone would be a first digit extending outward and backward towards the humerus. That view was adopted by Professor Marsh. It involves the interpretation of what has been termed the lateral carpal as the first metacarpal bone, which would be as short as that of a bird, but turned in the opposite direction backward. The first digit would then only carry one phalange, and would not terminate in a claw, but lie in the line of the tendon which supports the anterior wing membrane of a bird.

The third bone in the fore-arm of Chrysochloris does not appear to correspond to a digit. The bone is on the opposite side of the arm to the similar bone of a Pterodactyle, and therefore cannot be the same structure in the Golden Mole. The interpretation which makes the pteroid bone the first digit has the merit of accounting for the fifth digit of the hand. All the structures of the hand are consistent with this view.

The circ.u.mstance that the bone is rarely found in contact with the radius, but diverging from it, shows that it plays the same part in stretching the membrane in advance of the arm, that the fifth digit holds in supporting the larger wing membrane behind the arm.

According to Professor Williston, the American toothless Pterodactyle Ornithostoma has but a single phalange on the corresponding first toe of the hind foot, and that bone he describes as long, cylindrical, gently curved, and bluntly pointed. There is some support for this interpretation; but I have not seen any English or German Pterodactyles with only one phalange in the first toe.

The wing in Pterodactyles would thus be stretched between two fingers which are bent backward, the three intermediate digits terminating in claws.

THE CARPUS

The wrist bones in the reptilia usually consist of two rows. In Crocodiles, in the upper row there is a large inner and a small outer bone, behind which is a lunate bone, the remainder of the carpus being cartilaginous. Only one carpal is converted into bone in the lower row.

It is placed immediately under the smaller upper carpal. In Chelonians, the turtle and tortoise group, the characters of the carpus vary with the family. In the upper row there are usually two short carpals, which may be blended, under the ulna; while the two under the radius are commonly united. The lower row is made up of several small bones.

Lizards, too, usually have three bones in the proximal row and five smaller bones in the distal row.

The correspondence of the distal carpals with the several metacarpal bones of the middle hand is a well-known feature of the structure of the wrist.

Von Meyer remarks that the carpus is made up of two rows of small bones in the Solenhofen Pterodactyles; while in birds there is one row consisting of two bones. The structure of the carpus is not distinct in all German specimens; but in the short-tailed Solenhofen genera the bones in the two rows retain their individuality.

In all the Cretaceous genera the carpal bones of each row are blended into a single bone, so that two bones are superimposed, which may be termed the proximal and distal carpals. One specimen shows by an indication of sutures the original division of the distal carpal into three bones; and the separated const.i.tuent bones are very rarely met with. Two bones of the three confluent elements contribute to the support of the wing metacarpal, and the third gives an articular attachment to the bone which extends laterally at the inner side of the carpus, which I now think may be the first metacarpal bone turned backward towards the humerus. The three component bones meet in the circular pneumatic foramen in the middle of the under side of the distal carpal. There is no indication of division of the proximal carpal in these genera into const.i.tuent bones.

[Ill.u.s.tration: FIG. 43. CARPUS FROM ORNITHOCHEIRUS (Cambridge Greensand)]

This condition is somewhat different from birds. In 1873 Dr. Rosenberg, of Dorpat, showed that there is in the bird a proximal carpal formed of two elements, and a distal carpal also formed of two elements. Therefore the two const.i.tuents of the distal carpal in the bird which blends in the mature animal with the metacarpus, forming the rounded pulley joint, may correspond with two of the three bones in the Cretaceous Pterodactyle _Ornithocheirus._

The width of a proximal carpal rarely exceeds two inches, and that of a distal carpal is about an inch and three-quarters. Two such bones when in contact would not measure more than one inch in depth. The lower surface shows that the wing had some rotary movement upon the carpus outward and backward.

METACARPUS

[Ill.u.s.tration: FIG. 44. METACARPUS IN TWO ORNITHOSAURS]

The metacarpus consists of bones which correspond to the back of the hand. The first digit of the hand in clawed animals has the metacarpal bone short, or shorter than the others. Among mammals metacarpal bones are sometimes greatly elongated; and a similar condition is found in Pterodactyles, in which the metacarpal bone may be much longer than the phalange which is attached to it. Two metacarpal bones appear to be singularly stouter than the others. The first bone of the first digit, if rightly determined, is much shorter than the others, and is, in fact, no longer than the carpus (Fig. 43). It is a flat oblong bone, attached to the inner side of the lower carpal, and instead of being prolonged distally in the same direction as the other metacarpal bones, is turned round and directed upward, so that its upper edge is flush with the base of the radius, and gives attachment to a bone which resembles a terminal phalange of the wing finger. According to this interpretation it is the first and only phalange in the first digit. The bone is often about half as long as the fore-arm, terminates upward in a point, is sometimes curved, and frequently diverges outward from the bones of the fore-arm, as preserved in the a.s.sociated skeleton, being stretched towards the radial crest of the humerus. This mode of attachment of the supposed first metacarpal, which is true for all Cretaceous pterodactyles, has not been shown to be the same for all those from the Solenhofen Slate.

There is no greater anomaly in this metacarpal and phalange on the inner side being bent backward, than there is in the wing finger being bent backward on the outer side. The three slender intervening digits extend forward between them, as though they were applied to the ground for walking.

The bone which is usually known as the wing metacarpal is frequently stouter at the proximal end towards the carpus than towards the phalange. At the carpal end it is oblong and truncated, with a short middle process, which may have extended into the pit in the base of the carpal bone; while the distal terminal end is rounded exactly like a pulley. There is great difference in the length of the metacarpus. In the American genus Ornithostoma it is much longer than the fore-arm. In Rhamphorhynchus it is remarkably short, though perhaps scarcely so short as in Dimorphodon or in Scaphognathus. The largest Cretaceous examples are about two inches wide where they join the carpus. The bone is sometimes a little curved.

Between the first and fifth or wing metacarpal are the three slender metacarpal bones which give attachment to the clawed digits. They bear much the same relation to the wing metacarpal that the large metatarsal of a Kangaroo has to the slender bones of the instep which are parallel to it.

The facet for the wing metacarpal on the carpus is clearly recognised, but as a rule there is no surface with which the small metacarpals can be separately articulated. One or two exceptional specimens from the Cambridge Greensand appear to have not only surfaces for the wing metacarpal, but two much smaller articular surfaces, giving attachment to smaller metacarpals; while in one case there appears to be only one of these additional impressions. It is certain that all the animals from the Lias and Oolites have three clawed digits, but at present I have seen no evidence that there were three in the Cretaceous genera, though Professor Williston's statements and restoration appear to show that the toothless Pterodactyles have three. Another difference from the Oolitic types, according to Professor Williston, is in the length of the slender metacarpals of the clawed phalanges being about one-third that of the wing metacarpal, but this is probably due to imperfect ossification at the proximal end; for at the distal end the bones all terminated on the same level, showing that the four outer digits were applied to the ground to support the weight of the body. The corresponding bone in the Horse and Oxen is carried erect, so as to be in a vertical line with the bones of the fore-arm; and the same position prevails usually, though not invariably, with the corresponding bone in the hind limb, while in many clawed mammals the metacarpus and metatarsus are both applied upon the ground. In Pterodactyles the metatarsal bones are preserved in the rock in the same straight line with the smaller bones of the foot, or make an angle with the s.h.i.+n bone, leading to the conviction that the bones of the foot were applied to the ground as in Man, and sometimes as in the Dog, and were thus modified for leaping. Just as the human metacarpus is extended in the same line with the bones of the fore-arm, and the movement of jointing occurs where the fingers join the metacarpus, so Pterodactyles also had these bones differently modified in the fore and hind limbs for the functions of life. The result is to lengthen the fore limb as compared with the hind limb by introducing into it an elevation above the ground which corresponds to the length of the metacarpus, always supposing that the animal commonly a.s.sumed the position of a quadruped when upon the earth's surface.

This position of the metacarpus is a remarkable difference from Birds, because when the bird's wing is at rest it is folded into three portions. The upper arm bone extends backward, the bones of the fore-arm are bent upon it so as to extend forward, and then at the wrist the third portion, which includes the metacarpus and finger bones, is bent backward. So that the metacarpus in the Pterodactyle differs from birds in being in the same line as the bones of the fore-arm, whereas in birds it is in the same line with the digit bones of the hand. It is worthy of remark that in Bats, which are so suggestive of Pterodactyles in some features of the hand, the metacarpals and phalanges are in the same straight line; so that in this respect the bat is more like the bird.

But Pterodactyles in the relation of these bones to flight are quite unlike any other animal, and have nothing in common with the existing animals named Reptiles.

THE HAND

From what has just been said it follows that the construction of the hand is unique. It may be contrasted with the foot of a bird. The bone which is called, in the language of anatomists, the tarso-metatarsus, and is usually free from feathers and covered with skin, is commonly carried erect in birds, so that the whole body is supported upon it; and from it the toes diverge outward. It is formed in birds of three separate bones blended together. In the fore limb of the Pterodactyle the metacarpus has the same relation to the bones of the fore-arm that the metatarsus has to the corresponding bones of the leg in a bird. But the three metacarpal bones in the Pterodactyle remain distinct from each other, perhaps because the main work of that region of the skeleton has devolved upon the digit called the wing finger, which is not recognised in the bird. In the Pterodactyles from the Solenhofen Slate there is a progressive number of phalanges in the three small digits of the hand, which were applied to the ground. This number in the great majority of species follows the formula of two bones in the first, three bones in second, and four in the third; so that in the innermost of the clawed digits only one bone intervenes between the metacarpal and the claw. The fingers slightly increase in length with increase in number of bones which form them.

[Ill.u.s.tration: FIG. 45. CLAW PHALANGE FROM THE HAND IN ORNITHOCHEIRUS. (Half natural size)]

[Ill.u.s.tration: FIG. 46. METACARPUS AND DIGITS OF THE HAND IN BIRDS WITH CLAWS]

The terminal claw bones are unlike the claws of Birds or Reptiles. They are compressed from side to side, and extremely deep and strong, with evidence of powerful attachment for ligaments, so that they rather resemble in their form and large size the claws of some of the carnivorous fossil reptiles, often grouped as Dinosauria, such as have been termed Aristosuchus and Megalosaurus. In the hand of the Ostrich the first and second digits terminate in claws, while the third is without a claw. But these claws of the Ostrich and other birds are slender, curved, and rather feeble organs. In the Archaeopteryx, a fossil bird which agrees with the Pterodactyles in retaining the separate condition of the metacarpal bones and in having the same number of phalanges in two of the fingers of the fore limb, the terminal claws are rather more compressed from side to side, and stronger than in the Ostrich, but not nearly so strong as in the Pterodactyle. The Archaeopteryx differs from the Pterodactyle in having no trace of a wing finger. The first metacarpal bone is short, as in all birds; and the first phalange scarcely lengthens that segment of the first digit of the Bird's hand to the same length as the other metacarpal bones. It therefore was not bent backward like the first digit in Pterodactyles.

The wing finger, from which the genius of Cuvier selected the scientific name--Pterodactyle--for these fossils, yields their most distinctive character. It is a feature which could only be partly paralleled in the Bat, by making changes of structure which would remove every support to the wing but the outermost digit of that animal's hand. In the Bat's hand the membrane for flight is extended chiefly by four diverging metacarpal bones. There are only two or three phalanges in each digit in its four wing fingers. In Pterodactyles the metacarpal bones are, as we have seen, arranged in close contact, and take no part in stretching the wing.

THE WING FINGER

In Birds there is nothing whatever to represent the wing finger of the Pterodactyle, for it is an organ external to the finger bones of the bird, and contains four phalanges. The first phalange is quite different from the others. Its length is astonis.h.i.+ng when compared with the small phalanges of the clawed fingers. The articular surface, which joins on to the wing metacarpal bone, is a concave articulation, which fits the pulley in which that bone ends. The pulley articulation admits of an extension movement in one direction only. Many specimens show the wing finger to be folded up so as to extend backward. The whole finger is preserved in other specimens straightened out so as to be in line with the metacarpus. This condition is well seen in Professor Marsh's specimen of Rhamphorhynchus, which has the wing membrane preserved, in which all bones of the fore-arm metacarpus and wing finger are extended in a continuous curve. The outer surface of the end of the first bone of the wing finger overlaps the wing metacarpal, so that a maximum of strength and resistance is provided in the bony structures by which the wing is supported. There is, therefore, in flight only one angular bend in the limb, and that is between the upper arm bone and the fore-arm.

An immense pneumatic foramen is situate in a groove on the under side of the upper end of the first phalange in Ornithocheirus, but is absent in specimens from the Kimeridge clay. This bone is long and stout. It terminates at the lower end in an obliquely truncated articular surface.

Specimens occur in the Cambridge Greensand which are 2 inches broad at the upper end and nearly 1-1/2 inch wide at the lower end. An imperfect bone from the Chalk is 14-1/2 inches long. The bones are all flattened.

Specimens from the Chalk of Kansas at Munich are 28 inches long. The second phalange is concave at the upper articular end and convex in the longer direction at the lower end. The articular points of union between the several phalanges form prominences on the under side of the finger in consequence of the adjacent bones being a little widened at their junction. It should be mentioned that there is a proximal epiphysis or separate bone to the first phalange, adjacent to the pulley joint of the metacarpal bone, which is like the separate olecranon process of the ulna of the fore-arm. It sometimes comes away in specimens from the Chalk and Cambridge Greensand, leaving a large circular pit with a depressed narrow border. On the outer side of this process is a rounded boss, which may possibly have supported the bone, if it were applied to the ground with the wing folded up, like the wing of a Bat directed upward and backward at the animal's side.

The four bones of the wing finger usually decrease progressively in length, so that in Rhamphorhynchus, in which the length of the animal's head only slightly exceeds 3-1/2 inches, the first phalange is nearly as long, the second phalange is about 3-1/4 inches, the third 2-3/4 inches, and the fourth a little over 2 inches. Thus the entire length of the four phalanges slightly exceeds 11 inches, or rather more than three times the length of the head. But the fore-arm and metacarpus in this type only measure 3 inches. Therefore the entire spread of wings could not have been more than 2 feet 9 inches.

The largest Ornithosaur in which accurate measurements have been made is the toothless Pterodactyle Ornithostoma, also named Pteranodon, from North America. In that type the head appears to have been about 3 or 4 feet long, and the wing finger exceeded 5 feet; while the length of the fore-arm and metacarpus exceeded 3 feet. The width of the body would not have been more than 1 foot. The length of the short humerus, which was about 11 inches, did not add greatly to the stretch of the wing; so that the spread of the wings as stretched in flight may be given as probably not exceeding 17 or 18 feet. A fine example of the wing bones of this animal quite as large has been obtained by the (British Museum Natural History). Many years ago, on very fragmentary materials, I estimated the wings in the English Cretaceous Ornithocheirus as probably having a stretch of 20 feet in the largest specimens, basing the calculation partly upon the extent of the longest wings in existing birds relatively to their bones, and partly upon the size of the largest a.s.sociated bones which were then known.

CHAPTER XII

EVIDENCES OF THE ANIMAL'S HABITS FROM ITS REMAINS

Such are the more remarkable characters of the bones in a type of animal life which was more anomalous than any other which peopled the earth in the Secondary Epoch of geological time. Its skeleton in different parts resembles Reptiles, Birds, and Mammals; with modifications and combinations so singular that they might have been deemed impossible if Nature's power of varying the skeleton could be limited. Since Ornithosaurs were provided with wings, we may believe the animals to some extent to have resembled birds in habit. Their modes of progression were more varied, for the structures indicate an equal capacity for movement on land as a biped, or as a quadruped, with movement in the air. There is little evidence to support the idea that they were usually aquatic animals. The majority of birds which frequent the water have their bodies stored with fat and the bones of their extremities filled with marrow. And a bird's marrow bones are stouter and stronger than those which are filled with air. There are few, if any, bones of Pterodactyles so thick as to suggest the conclusion that they contained marrow, and the bones of the extremities appear to have been constructed on the lightest type found among terrestrial birds. Their thinness, except in a few specimens from the Wealden rocks, is marvellous; and all the later Pterodactyles show the arrangement, as in birds, by which air from the lungs is conveyed to the princ.i.p.al bones.

No Pterodactyle has shown any trace of the web-footed condition seen in birds which swim on the water, unless the diverging bones of the hind foot in Rhamphorhynchus supports that inference. The bones of the hind foot are relatively small, and if it were not that a bird stands easily upon one foot, might be considered scarcely adequate to support the animal in the position which terrestrial birds usually occupy. Yet, as compared with the length and breadth of the foot in an Ostrich, the toes of an Ornithosaur are seen to be ample for support. These facts appear to discourage the idea that the animals were equally at home on land and water, and in air.

Some light may be thrown upon the animal's habits by the geological circ.u.mstances under which the remains are found. The Pterodactyle named Dimorphodon, from the Lias of the south of England, is a.s.sociated with evidences of terrestrial land animals, the best known of which is Scelidosaurus, an armoured Dinosaur adapted by its limbs for progression on land. And the Pterodactyle Campylognathus, from the Lias of Whitby, is a.s.sociated with trunks of coniferous trees and remains of Insects. So that the occurrence of Pterodactyles in a marine stratum is not inconsistent with their having been transported by streams from off the old land surface of the Lias, on which coniferous trees grew and Dinosaurs lived.

Similar considerations apply to the occurrence of the Rhamphocephalus in the Stonesfield Slate of England. The deposit is not only formed in shallow water, but contains terrestrial Insects, a variety of land plants, and many Reptiles and other animals which lived upon land. The specimens from the Purbeck beds, again, are in strata which yield a mult.i.tude of the spoils of a nearly adjacent land surface; while the numerous remains found in the marine Solenhofen Slate in Germany are similarly a.s.sociated with abundant evidences of varied types of terrestrial life. The evidence grows in force from its c.u.mulative character. The Wealden beds, which yield many terrestrial reptiles and so much evidence of terrestrial vegetation, and shallow-water conditions of disposition, have afforded important Pterodactyle remains from the Isle of Wight and Suss.e.x.

The chief English deposit in which these fossils are found, the Upper Greensand, has afforded thousands of bones, battered and broken on a sh.o.r.e, where they have lain in little a.s.sociated groups of remains, often becoming overgrown with small marine sh.e.l.ls. Side by side with them are found bones of true terrestrial Lizards and Crocodiles of the type of the Gavial of the Indian rivers, many terrestrial Dinosaurs, and other evidences of land life, including fossil resins, such as are met with in the form of amber or copal at the present day.

The great bones of Pterodactyles found in the Chalk of Kent, near Rochester, became entombed, beyond question, far from a land surface.

There is nothing to show whether the animals died on land and were drifted out to sea like the timber which is found water-logged and sunken after being drilled by the s.h.i.+p-worm (Teredo) of that epoch.

Seeing the power of flight which the animal possessed, storms may have struck down travellers from time to time, when far from land.

Evidence of habit of another kind may be found in their teeth. They are brightly enamelled, sharp, formidable; and are frequently long, overlapping the sides of the jaws. They are organs which are often better adapted for grasping than for tearing, as may be seen in the inclined teeth of Rhamphocephalus of the Stonesfield Slate; and better adapted for killing than tearing, from their piercing forms and cutting edges, in genera like Ornithocheirus of the Greensand. The manner in which the teeth were implanted and carried is better paralleled by the fish-eating crocodile of Indian rivers than by the flesh-eating crocodiles, or Muggers, which live indifferently in rivers and the sea.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Dragons of the Air Part 8 summary

You're reading Dragons of the Air. This manga has been translated by Updating. Author(s): H. G. Seeley. Already has 648 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com