BestLightNovel.com

General Science Part 11

General Science - BestLightNovel.com

You’re reading novel General Science Part 11 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

A child wearing a green frock on Independence Day seems at night to be wearing a black frock, if standing near powders burning with red, blue, or violet light.

132. Pure, Simple Colors--Things as they Seem. To the eye white light appears a simple, single color. It reveals its compound nature to us only when pa.s.sed through a prism, when it shows itself to be compounded of an infinite number of colors which Sir Isaac Newton grouped in seven divisions: violet, indigo, blue, green, yellow, orange, and red.

We naturally ask ourselves whether these colors which compose white light are themselves in turn compound? To answer that question, let us very carefully insert a second prism in the path of the rays which issue from the first prism, carefully barring out the remaining six kinds of rays. If the red light is compound, it will be broken up into its const.i.tuent parts and will form a typical spectrum of its own, just as white light did after its pa.s.sage through a prism. But the red rays pa.s.s through the second prism, are refracted, and bent from this course, and no new colors appear, no new spectrum is formed. Evidently a ray of spectrum red is a simple color, not a compound color.

If a similar experiment is made with the remaining spectrum rays, the result is always the same: the individual spectrum colors remain simple, pure colors. _The individual spectrum colors are groups of simple, pure colors._

[Ill.u.s.tration: FIG. 88.--Violet and green give blue. Green, blue, and red give white.]



133. Colors not as they Seem--Compound Colors. If one half of a cardboard disk (Fig. 88) is painted green, and the other half violet, and the disk is slipped upon a toy top, and spun rapidly, the rotating disk will appear blue; if red and green are used in the same way instead of green and violet, the rotating disk will appear yellow. A combination of red and yellow will give orange. The colors formed in this way do not appear to the eye different from the spectrum colors, but they are actually very different. The spectrum colors, as we saw in the preceding Section, are pure, simple colors, while the colors formed from the rotating disk are in reality compounded of several totally different rays, although in appearance the resulting colors are pure and simple.

If it were not that colors can be compounded, we should be limited in hue and shade to the seven spectral colors; the wealth and beauty of color in nature, art, and commerce would be unknown; the flowers with their thousands of hues would have a poverty of color undreamed of; art would lose its magenta, its lilac, its olive, its lavender, and would have to work its wonders with the spectral colors alone. By compounding various colors in different proportions, new colors can be formed to give freshness and variety. If one third of the rotating disk is painted blue, and the remainder white, the result is lavender; if fifteen parts of white, four parts of red, and one part of blue are arranged on the disk, the result is lilac. Olive is obtained from a combination of two parts green, one part red, and one part black; and the soft rich shades of brown are all due to different mixtures of black, red, orange, or yellow.

134. The Essential Colors. Strange and unexpected facts await us at every turn in science! If the rotating cardboard disk (Fig. 88) is painted one third red, one third green, and one third blue, the resulting color is white. While the mixture of the spectral colors produces white, it is not necessary to have all of the spectral colors in order to obtain white; because a mixture of the following colors alone, red, green, and blue, will give white. Moreover, by the mixture of these three colors in proper proportions, any color of the spectrum, such as yellow or indigo or orange, may be obtained. The three spectral colors, red, green, and blue, are called primary or essential hues, because all known tints of color may be produced by the careful blending of blue, green, and red in the proper proportions; for example, purple is obtained by the blending of red and blue, and orange by the blending of red and yellow.

135. Color Blindness. The nerve fibers of the eye which carry the sensation of color to the brain are particularly sensitive to the primary colors--red, green, blue. Indeed, all color sensations are produced by the stimulation of three sets of nerves which are sensitive to the primary colors. If one sees purple, it is because the optic nerves sensitive to red and blue (purple equals red plus blue) have carried their separate messages to the brain, and the blending of the two distinct messages in the brain has given the sensation of purple. If a red rose is seen, it is because the optic nerves sensitive to red have been stimulated and have carried the message to the brain.

A snowy field stimulates equally all three sets of optic nerves--the red, the green, and the blue. Lavender, which is one part blue and three parts white, would stimulate all three sets of nerves, but with a maximum of stimulation for the blue. Equal stimulation of the three sets would give the impression of white.

A color-blind person has some defect in one or more of the three sets of nerves which carry the color message to the brain. Suppose the nerve fibers responsible for carrying the red are totally defective.

If such a person views a yellow flower, he will see it as a green flower. Yellow contains both red and green, and hence both the red and green nerve fibers should be stimulated, but the red nerve fibers are defective and do not respond, the green nerve fibers alone being stimulated, and the brain therefore interprets green.

A well-known author gives an amusing incident of a dinner party, at which the host offered stewed tomato for apple sauce. What color nerves were defective in the case of the host?

In some employments color blindness in an employee would be fatal to many lives. Engineers and pilots govern the direction and speed of trains and boats largely by the colored signals which flash out in the night's darkness or move in the day's bright light, and any mistake in the reading of color signals would imperil the lives of travelers. For this reason a rigid test in color is given to all persons seeking such employment, and the ability to match ribbons and yarns of all ordinary hues is an unvarying requirement for efficiency.

CHAPTER XIV

HEAT AND LIGHT AS COMPANIONS

"The night has a thousand eyes, And the day but one; Yet the light of the bright world dies With the dying sun."

136. Most bodies which glow and give out light are hot; the stove which glows with a warm red is hot and fiery; smoldering wood is black and lifeless; glowing coals are far hotter than black ones. The stained-gla.s.s window softens and mellows the bright light of the sun, but it also shuts out some of the warmth of the sun's rays; the shady side of the street spares our eyes the intense glare of the sun, but may chill us by the absence of heat. Our illumination, whether it be oil lamp or gas jet or electric light, carries with it heat; indeed, so much heat that we refrain from making a light on a warm summer's night because of the heat which it unavoidably furnishes.

137. Red a Warm Color. We have seen that heat and light usually go hand in hand. In summer we lower the shades and close the blinds in order to keep the house cool, because the exclusion of light means the exclusion of some heat; in winter we open the blinds and raise the shades in order that the sun may stream into the room and flood it with light and warmth. The heat of the sun and the light of the sun seem boon companions.

We can show that when light pa.s.ses through a prism and is refracted, forming a spectrum, as in Section 127, it is accompanied by heat. If we hold a sensitive thermometer in the violet end of the spectrum so that the violet rays fall upon the bulb, the reading of the mercury will be practically the same as when the thermometer is held in any dark part of the room; if, however, the thermometer is slowly moved toward the red end of the spectrum, a change occurs and the mercury rises slowly but steadily, showing that heat rays are present at the red end of the spectrum. This agrees with the popular notion, formed independently of science, which calls the reds the warm colors. Every one of us a.s.sociates red with warmth; in the summer red is rarely worn, it looks hot; but in winter red is one of the most pleasing colors because of the sense of warmth and cheer it brings.

_All light rays are accompanied by a small amount of heat, but the red rays carry the most._

What seems perhaps the most unexpected thing, is that the temperature, as indicated by a sensitive thermometer, continues to rise if the thermometer is moved just beyond the red light of the spectrum. There actually seems to be more heat beyond the red than in the red, but if the thermometer is moved too far away, the temperature again falls.

Later we shall see what this means.

138. The Energy of the Sun. It is difficult to tell how much of the energy of the sun is light and how much is heat, but it is easy to determine the combined effect of heat and light.

[Ill.u.s.tration: FIG. 89.--The energy of the sun can be measured in heat units.]

Suppose we allow the sun's rays to fall perpendicularly upon a metal cylinder coated with lampblack and filled with a known quant.i.ty of water (Fig. 89); at the expiration of a few hours the temperature of the water will be considerably higher. Lampblack is a good absorber of heat, and it is used as a coating in order that all the light rays which fall upon the cylinder may be absorbed and none lost by reflection.

Light and heat rays fall upon the lampblack, pa.s.s through the cylinder, and heat the water. We know that the red light rays have the largest share toward heating the water, because if the cylinder is surrounded by blue gla.s.s which absorbs the red rays and prevents their pa.s.sage into the water, the temperature of the water begins to fall.

That the other light rays have a small share would have been clear from the preceding Section.

All the energy of the suns.h.i.+ne which falls upon the cylinder, both as heat and as light, is absorbed in the form of heat, and the total amount of this energy can be calculated from the increase in the temperature of the water. The energy which heated the water would have pa.s.sed onward to the surface of the earth if its path had not been obstructed by the cylinder of water; and we can be sure that the energy which entered the water and changed its temperature would ordinarily have heated an equal area of the earth's surface; and from this, we can calculate the energy falling upon the entire surface of the earth during any one day.

Computations based upon this experiment show that the earth receives daily from the sun the equivalent of 341,000,000,000 horse power--an amount inconceivable to the human mind.

Professor Young gives a striking picture of what this energy of the sun could do. A solid column of ice 93,000,000 miles long and 2-1/4 miles in diameter could be melted in a single second if the sun could concentrate its entire power on the ice.

While the amount of energy received daily from the sun by the earth is actually enormous, it is small in comparison with the whole amount given out by the sun to the numerous heavenly bodies which make up the universe. In fact, of the entire outflow of heat and light, the earth receives only one part in two thousand million, and this is a very small portion indeed.

139. How Light and Heat Travel from the Sun to Us. Astronomers tell us that the sun--the chief source of heat and light--is 93,000,000 miles away from us; that is, so far distant that the fastest express train would require about 176 years to reach the sun. How do heat and light travel through this vast abyss of s.p.a.ce?

[Ill.u.s.tration: FIG. 90.--Waves formed by a pebble.]

A quiet pool and a pebble will help to make it clear to us. If we throw a pebble into a quiet pool (Fig. 90), waves or ripples form and spread out in all directions, gradually dying out as they become more and more distant from the pebble. It is a strange fact that while we see the ripple moving farther and farther away, the particles of water are themselves not moving outward and away, but are merely bobbing up and down, or are vibrating. If you wish to be sure of this, throw the pebble near a spot where a chip lies quiet on the smooth pond. After the waves form, the chip rides up and down with the water, but does not move outward; if the water itself were moving outward, it would carry the chip with it, but the water has no forward motion, and hence the chip a.s.sumes the only motion possessed by the water, that is, an up-and-down motion. Perhaps a more simple ill.u.s.tration is the appearance of a wheat field or a lawn on a windy day; the wind sweeps over the gra.s.s, producing in the gra.s.s a wave like the water waves of the ocean, but the blades of gra.s.s do not move from their accustomed place in the ground, held fast as they are by their roots.

If a pebble is thrown into a quiet pool, it creates ripples or waves which spread outward in all directions, but which soon die out, leaving the pool again placid and undisturbed. If now we could quickly withdraw the pebble from the pool, the water would again be disturbed and waves would form. If the pebble were attached to a string so that it could be dropped into the water and withdrawn at regular intervals, the waves would never have a chance to disappear, because there would always be a regularly timed definite disturbance of the water. Learned men tell us that all hot bodies and all luminous bodies are composed of tiny particles, called molecules, which move unceasingly back and forth with great speed. In Section 95 we saw that the molecules of all substances move unceasingly; their speed, however, is not so great, nor are their motions so regularly timed as are those of the heat-giving and the light-giving particles. As the particles of the hot and luminous bodies vibrate with great speed and force they violently disturb the medium around them, and produce a series of waves similar to those produced in the water by the pebble. If, however, a pebble is thrown into the water very gently, the disturbance is slight, sometimes too slight to throw the water into waves; in the same way objects whose molecules are in a state of gentle motion do not produce light.

The particles of heat-giving and light-giving bodies are in a state of rapid vibration, and thereby disturb the surrounding medium, which transmits or conveys the disturbance to the earth or to other objects by a train of waves. When these waves reach their destination, the sensation of light or heat is produced.

We see the water waves, but we can never see with the eye the heat and light waves which roll in to us from that far-distant source, the sun.

We can be sure of them only through their effect on our bodies, and by the visible work they do.

140. How Heat and Light Differ. If heat and light are alike due to the regular, rapid motion of the particles of a body, and are similarly conveyed by waves, how is it, then, that heat and light are apparently so different?

Light and heat differ as much as the short, choppy waves of the ocean and the slow, long swell of the ocean, but not more so. The sailor handles his boat in one way in a choppy sea and in a different way in a rolling sea, for he knows that these two kinds of waves act dissimilarly. The long, slow swell of the ocean would correspond with the longer, slower waves which travel out from the sun, and which on reaching us are interpreted as heat. The shorter, more frequent waves of the ocean would typify the short, rapid waves which leave the sun, and which on reaching us are interpreted as light.

CHAPTER XV

ARTIFICIAL LIGHTING

141. We seldom consider what life would be without our wonderful methods of illumination which turn night into day, and prolong the hours of work and pleasure. Yet it was not until the nineteenth century that the marvelous change was made from the short-lived candle to the more enduring oil lamp. Before the coming of the lamp, even in large cities like Paris, the only artificial light to guide the belated traveler at night was the candle required to be kept burning in an occasional window.

With the invention of the kerosene lamp came more efficient lighting of home and street, and with the advent of gas and electricity came a light so effective that the hours of business, manufacture, and pleasure could be extended far beyond the setting of the sun.

The production of light by candle, oil, and gas will be considered in the following paragraphs, while illumination by electricity will be reserved for a later Chapter.

142. The Candle. Candles were originally made by dipping a wick into melting tallow, withdrawing it, allowing the adhered tallow to harden, and repeating the dipping until a satisfactory thickness was obtained.

The more modern method consists in pouring a fatty preparation into a mold, at the center of which a wick has been placed.

The wick, when lighted, burns for a brief interval with a faint, uncertain light; almost immediately, however, the intensity of the light increases and the illumination remains good as long as the candle lasts. The heat of the burning tallow melts more of the tallow near it, and this liquid fat is quickly sucked up into the burning wick. The heat of the flame is sufficient to change most of this liquid into a gas, that is, to vaporize the liquid, and furthermore to set fire to the gas thus formed. These heated gases burn with a bright yellow flame.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

General Science Part 11 summary

You're reading General Science. This manga has been translated by Updating. Author(s): Bertha May Clark. Already has 549 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com