BestLightNovel.com

A Catechism of the Steam Engine Part 30

A Catechism of the Steam Engine - BestLightNovel.com

You’re reading novel A Catechism of the Steam Engine Part 30 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

593. _Q._--How can this be done?

_A._--There are screws which are intended to accomplish, this object already in actual use. When there is much slip a centrifugal velocity is given to the water, and the screw, indeed, if the engine be set on when the vessel is at rest, acts very much as a centrifugal fan would do if placed in the same situation. The water projected outward by the centrifugal force escapes in the line of least resistance, which is to the surface; and if there be a high column of water over the screw, or, in other words, if the screw is deeply immersed, then the centrifugal action is resisted to a greater extent, and there will be less slip produced. The easiest expedient, therefore, for obviating loss by slip is to sink the screw deeply in the water; but as there are obvious limits to the application of this remedy, the next best device is to recover and render available for propulsion some part of the power which has been expended in giving motion to the water. One device for doing this consists in placing the screw well forward in the dead wood, so that it shall be overhung by the stern of the s.h.i.+p. The water forced upward by the centrifugal action of the screw will, by impinging on the overhanging stern, press the vessel forward in the water, just in the same way as is done by the wind when acting on an oblique sail. I believe, the two revolving vanes without any twist or obliquity on them at all, would propel a vessel if set well forward in the dead wood or beneath the bottom, merely by the ascent of the water up the inclined plane of the vessel's run; and, at all events, a screw so placed would, in my judgment, aid materially in propelling the vessel when her progress was resisted by head winds.

594. _Q._--But you said there are some kinds of screws which profess to accomplish this?

[Ill.u.s.tration: Fig. 49. THE EARL OF DUNDONALD'S PROPELLER.]

_A._--There are screws which profess to counteract the centrifugal velocity given to the water by imparting to it an equal centripetal force, the consequence of which will be, that the water projected backward by the screw, instead of taking the form of the frustum of a cone, with its small end next the screw, will take the form of a cylinder. One of these forms of screw is that patented by the Earl of Dundonald in 1843, and which is represented in fig. 49. Another is the form of screw already represented in fig. 48, and which was patented by Mr. Hodgson in 1844. Mr. Hodgson bends the arms of his propellers backward, not into the form of a triangle, but into the form of a parabola, to the end that the impact of the screw on the particles of the water may cause them to converge to a focus, as the rays of light would do in a parabolic reflector. But this particular configuration is not important, seeing that the same convergence which is given to the particles of the water, with a screw of uniform pitch bent back into the form of a parabola, will be given with a screw bent back into the form of a triangle, if the pitch be suitably varied between the centre and the circ.u.mference.

595. _Q._--Then the pitch may be varied in two ways?

_A._--Yes: a screw may have a pitch increasing in the direction of the length, as would happen in the case of a spiral stair, if every successive step in the ascent was thicker than the one below it; or it may increase from the centre to the circ.u.mference, as would happen in the case of a spiral stair, if every step were thinner at the centre of the lower than at its outer wall. When the pitch of a screw increases in the direction of its length, the leading edge of the screw enters the water without shock or impact, as the advance of the leading edge per revolution will not be greater than the advance of the vessel. When the pitch of a screw increases in the direction of its diameter, the central part of the screw will advance with only the same velocity as the water, so that it cannot communicate any centrifugal velocity to the water; and the whole slip, as well as the whole propelling pressure, will occur at the outer part of the screw blades.

596. _Q._--Is there any advantage derived from these forms of screws?

_A._--There is a slight advantage, but it is so slight as hardly to balance the increased trouble of manufacture, and, consequently, they are not generally or widely adopted.

597. _Q._--What other kinds of screw are there proposing to themselves the same or similar objects?

_A._--There is the corrugated screw, the arms of which are corrugated, so as it were to gear with the water during its revolution, and thereby prevent it from acquiring a centrifugal velocity. Then there is Griffith's screw, which has a large ball at its centre, which, by the suction it creates at its hinder part, in pa.s.sing through the water, produces a converging force, which partly counteracts the divergent action of the arms. Finally, there is Holm's screw, which has now been applied to a good number of vessels with success.

598. _Q._--Will you describe the configuration and action of Holm's screw?

_A._--First, then, the screw increases in the direction of its length, and this increase is very rapid at the following edge, so that, in fact, the following edge stands in the plane of the shaft, or in the vertical longitudinal plane of the vessel. Then the ends of the arms are bent over into a curved f.l.a.n.g.e, the edge of which points astern, and the point where this curved f.l.a.n.g.e joins the following edge of the screw is formed, not into an angle, but into a portion of a sphere, so that this corner resembles the bowl of a spoon. When the screw is put into revolution, the water is encountered by the leading edge of the screw without shock, as its advance is only equal to the advance of the vessel, and before the screw leaves the water it is projected directly astern. At the same time, the curved f.l.a.n.g.e at the rim of the screw prevents the dispersion of the water in a radial direction, and it consequently a.s.sumes the form of a column or cylinder of water, projected backward from the s.h.i.+p.

599. _Q._--What is the nature of Beattle's screw?

_A._--Beattie's screw is an arrangement of the screw propeller whereby it is projected beyond the rudder, and the main object of the arrangement is to take away the vibratory motion at the stern,--an intention which it accomplishes in practice. There is an oval eye in the rudder, to permit the screw shaft to pa.s.s through it.

600. _Q._--When the diameter of the cylinder of water projected backward by a screw, and the force urging it into motion are known, may not the velocity it will acquire be approximately determined?

_A._--That will not be very difficult; and I will take for ill.u.s.tration the case of the Minx, already referred to, which will show how such a computation is to be conducted. The speed of this vessel, in one of the experiments made with her, was 8.445 knots; the number of revolutions of the screw per minute, 231.32; and the pressure on each square foot of area of the screw's disc, 214 lbs. If a knot be taken to be 6075.6 feet, then the distance advanced by the vessel, when the speed is 8.445 knots, will be 3.7 feet per revolution, and this advance will be made in about .26 of a second of time. Now the distance which a body will fall by gravity, in .26 of a second, is 1.087 feet; and a weight of 214 lbs. put into motion by gravity, or by a pressure of 214 lbs., would, therefore, acquire a velocity of 1.087 feet during the time one revolution of the screw is being performed. The weight to be moved, however, is 3.7 cubic feet of water, that being the new water seized by the screw each revolution for every square foot of surface in the screw's disc; and 3.7 cubic feet of water weigh 231.5 lbs., so that the urging force of 214 lbs. is somewhat less than the force of gravity, and the velocity of motion communicated to the water will be somewhat under 1.087 feet per revolution, or we may say it will be in round numbers 1 foot per revolution. This, added to the progress of the vessel, will make the distance advanced by the screw through the water 4.7 feet per revolution, leaving the difference between this and the pitch, namely 1.13 feet, to be accounted for on the supposition that the screw blades had broken laterally through the water to that extent. It would be proper to apply some correction to this computation, which would represent the increased resistance due to the immersion of the screw in the water; for a column of water cannot be moved in the direction of its axis beneath the surface, without giving motion to the superinc.u.mbent water, and the inertia of this superinc.u.mbent water must, therefore, be taken into the account. In the experiment upon the Minx, the depth of this superinc.u.mbent column was but small. The total amount of the slip was 36.53 per cent.; and there will not be much error in setting down about one half of this as due to the recession of the water in the direction of the vessel's track, and the other half as due to the lateral penetration of the screw blades.

601. _Q._--Is it not important to make the stern of screw vessels very fine, with the view of diminis.h.i.+ng the slip, and increasing the speed?

_A._--It is most important. The Rifleman, a vessel of 486 tons, had originally engines of 200 horses power, which propelled her at a speed of 8 knots an hour. The Teazer, a vessel of 296 tons, had originally engines of 100 horses power, which propelled her at a speed of 6-1/2 knots an hour.

The engines of the Teazer were subsequently transferred to the Rifleman, and new engines of 40 horse power were put into the Teazer. Both vessels were simultaneously sharpened at the stern, and the result was, that the 100 horse engines drove the Rifleman, when sharpened, as fast as she had previously been driven by the 200 horse engines; and the 40 horse engines drove the Teazer, when sharpened, a knot an hour faster than she had previously been driven by the 100 horse engines. The immersion of both vessels was kept unchanged in each case; and the 100 horse engines of the Teazer, when transferred to the Rifleman, drove that vessel, after she had been sharpened, 2 knots an hour faster than they had previously driven a vessel not much more than half the size. These are important facts for every one to be acquainted with who is interested in the success of screw vessels, and who seeks to obtain the maximum of efficiency with the minimum of expense.[1]

[1] See Treatise on the Screw Propeller, by John Bourne, C. E.

PROPORTIONS OF SCREWS.

602. _Q._--In fixing upon the proportions of a screw proper to propel any given vessel, how would you proceed?

_A._--I would first compute the probable resistance of the vessel, and I would be able to find the relative resistances of the screw and hull, and in every case it is advisable to make the screw as large in diameter as possible. The larger the screw is, the greater will be the efficiency of the engine in propelling the vessel; the larger will be the ratio of the pitch to the diameter, which produces a maximum effect; and the smaller will be the length of the screw or the fraction of a convolution to produce a maximum effect.

603. _Q._--Will you ill.u.s.trate this doctrine by a practical example?

_A._--The French screw steamer Pelican was fitted successively with two screws of four blades, but the diameter of the first screw was 98.42 inches, and the diameter of the second 54 inches. If the efficiency of the first screw by represented by 1, that of the second screw will be represented by .823, or, in other words, if the first screw would give a speed of 10 knots, the second would give little more than 8. The most advantageous ratio of pitch to diameter was found to be 2.2 in the case of the large screw, and 1.384 in the case of the small. The fraction of a convolution which was found to be most advantageous was .281 in the case of the large screw, and .450 in the case of the small screw.

604. _Q_--Were screws of four blades found to be more efficient than screws with two?

_A_--They were found to have less slip, but not to be more efficient, the increased slip in those of two blades being balanced by the increased friction in those of four. Screws of two blades, to secure a maximum efficiency, must have a finer pitch than screws of four.

605. _Q._--Are the proportions found to be most suitable in the case of the Pelican applicable to the screws of other vessels?

_A._--Only to those which have the same relative resistance of screw and hull. Taking the relative resistance to be the area of immersed mids.h.i.+p section, divided by the square of the screw's diameter, it will in the case of the Rattler be 380/100 or 3.8. From the experiments made by MM. Bourgois and Moll on the screw steamer Pelican, they have deduced the proportions of screws proper for all other cla.s.ses of vessels, whether the screws are of two, four, or six blades.

606. _Q._--Will you specify the nature of their deductions?

_A._--I will first enumerate those which bear upon screws with two blades.

When the relative resistance is 5.5 the ratio of pitch to diameter should be 1.006, and the fraction of the pitch or proportion of one entire convolution should be 0.454. When the relative resistance is 5, the ratio of pitch to diameter should be 1.069, and fraction of pitch 0.428; relative resistance 4.5, pitch 1.135, fraction 0.402; relative resistance 4, pitch 1.205, fraction 0.378; relative resistance 3.5, pitch 1.279, fraction 0.355; relative resistance 3, pitch 1.357, fraction 0.334; relative resistance 2.5, pitch 1.450, fraction 0.313; relative resistance 2, pitch 1.560, fraction 0.294; relative resistance 1.5, pitch 1.682, fraction 0.275. The relative resistance of 4 is that which is usual in an auxiliary line of battle s.h.i.+p, 3.5 in an auxiliary frigate, 3 in a high speed line of battle s.h.i.+p, 2.5 in a high speed frigate, 2 in a high speed corvette, and 1.5 in a high speed despatch boat.

607. _Q._--What are the corresponding proportions of screws of four blades?

_A._--The ratios of the pitches to the diameter being for each of the relative resistances enumerated above, 1.342, 1.425, 1.513, 1.607, 1.705, 1.810, 1.933, 2.080, and 2.243, the respective fractions of pitch or fractions of a whole convolution will be 0.455, 0.428, 0.402, 0.378, 0.355, 0.334, 0.313, 0.294, and 0.275.

608. _Q._--And what are the corresponding proportions proper for screws of six blades?

_A._--Beginning with the relative resistance of 5.5 as before, the proper ratio of pitch to diameter for that and each of the successive resistances in the case of screws with six blades, will be 1.677, 1.771, 1.891, 1.2009, 2.131, 2.262, 2.416, 2.600, 2.804; and the respective fractions of pitch will be 0.794, 0.749, 0.703, 0.661, 0.621, 0.585, 0.548, 0.515, and 0.481.

These are the proportions which will give a maximum performance in every case.[1]

[1] In my Treatise on the Screw Propeller I have gone into these various questions more fully than would consort with the limits of this publication.

SCREW VESSELS WITH FULL AND AUXILIARY POWER.

609. _Q._--Do you consider that the screw propeller is best adapted for vessels of full power, or for vessels with auxiliary power?

_A._--It is, in my opinion, best adapted for vessels with auxiliary power, and it is a worse propeller than paddle wheels for vessels which have habitually to encounter strong head winds. Screw vessels are but ill calculated--at least as constructed heretofore--to encounter head winds, and the legitimate sphere of the screw is in propelling vessels with auxiliary power.

610. _Q._--Does the screw act well in conjunction with sails?

_A._--I cannot say it acts better than paddles, except in so far as it is less in the way and is less affected by the listing or heeling over of the s.h.i.+p. A small steam power, however, acts very advantageously in aid of sails, for not only does the operation of the sails in reducing the resistance of the hull virtually increase the screw's diameter, but the screw, by reducing the resistance which has to be overcome by the sails and by increasing the speed of the vessel, enables the sails to act with greater efficiency, as the wind will not rebound from them with as great a velocity as it would otherwise do, and a larger proportion of the power of the wind will also be used up. In the case of beam winds, moreover, the action of the screw, by the larger advance it gives to the vessel will enable the sails to intercept a larger column of wind in a given time. It appears, therefore, that the sails add to the efficiency of the screw, and that the screw also adds to the efficiency of the sails.

611. _Q._--What is the comparative cost of transporting merchandise in paddle steamers of full power, in screw steamers of auxiliary power, and in sailing s.h.i.+ps?

_A._--That will depend very much upon the locality where the comparison is made. In the case of vessels performing distant ocean voyages, in which they may reckon upon the aid of uniform and constant winds, such as the trade winds or the monsoon, sailing s.h.i.+ps of large size will be able to carry more cheaply than any other species of vessel. But where the winds are irregular and there is not much sea room, or for such circ.u.mstances as exist in the Channel or Mediterranean trades, screw vessels with auxiliary power will const.i.tute the cheapest instrument of conveyance.

612. _Q._--Are there any facts recorded ill.u.s.trative of the accuracy of this conclusion?

_A._--A full paddle vessel of 1000 tons burden and 350 horses power, will carry about 400 tons of cargo, besides coal for a voyage of 500 miles, and the expense of such a voyage, including wear and tear, depreciation, &c., will be about 190_l_. The duration of the voyage will be about 45-1/2 hours. A screw vessel of 400 tons burden and 100 horses power, will carry the same amount of cargo, besides her coals, on the same voyage, and the expense of the voyage, including wear and tear, depreciation, &c., will be not much more than 60_l_. An auxiliary screw vessel, therefore, can carry merchandise at one third of the cost of a full-powered paddle vessel. By similar comparisons made between the expense of conveying merchandise in auxiliary screw steamers and sailing s.h.i.+ps on coasting voyages, it appears that the cost in screw steamers is about one third less than in the sailing s.h.i.+ps; the greater expedition of the screw steamers much more than compensating for the expense which the maintenance of the machinery involves.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

A Catechism of the Steam Engine Part 30 summary

You're reading A Catechism of the Steam Engine. This manga has been translated by Updating. Author(s): John Bourne. Already has 571 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com