The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method - BestLightNovel.com
You’re reading novel The Foundations of Science: Science and Hypothesis, The Value of Science Science and Method Part 43 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
That has not yet been accounted for, and I believe that there we have one of the most important secrets of nature. A j.a.panese physicist, M.
Nagaoka, has recently proposed an explanation; according to him, atoms are composed of a large positive electron surrounded by a ring formed of a great number of very small negative electrons. Such is the planet Saturn with its rings. This is a very interesting attempt, but not yet wholly satisfactory; this attempt should be renewed. We will penetrate, so to speak, into the inmost recess of matter. And from the particular point of view which we to-day occupy, when we know why the vibrations of incandescent bodies differ thus from ordinary elastic vibrations, why the electrons do not behave like the matter which is familiar to us, we shall better comprehend the dynamics of electrons and it will be perhaps more easy for us to reconcile it with the principles.
_Conventions Preceding Experiment._--Suppose, now, that all these efforts fail, and, after all, I do not believe they will, what must be done? Will it be necessary to seek to mend the broken principles by giving what we French call a _coup de pouce_? That evidently is always possible, and I retract nothing of what I have said above.
Have you not written, you might say if you wished to seek a quarrel with me--have you not written that the principles, though of experimental origin, are now una.s.sailable by experiment because they have become conventions? And now you have just told us that the most recent conquests of experiment put these principles in danger.
Well, formerly I was right and to-day I am not wrong. Formerly I was right, and what is now happening is a new proof of it. Take, for example, the calorimetric experiment of Curie on radium. Is it possible to reconcile it with the principle of the conservation of energy? This has been attempted in many ways. But there is among them one I should like you to notice; this is not the explanation which tends to-day to prevail, but it is one of those which have been proposed. It has been conjectured that radium was only an intermediary, that it only stored radiations of unknown nature which flashed through s.p.a.ce in every direction, traversing all bodies, save radium, without being altered by this pa.s.sage and without exercising any action upon them. Radium alone took from them a little of their energy and afterward gave it out to us in various forms.
What an advantageous explanation, and how convenient! First, it is unverifiable and thus irrefutable. Then again it will serve to account for any derogation whatever to Mayer's principle; it answers in advance not only the objection of Curie, but all the objections that future experimenters might acc.u.mulate. This new and unknown energy would serve for everything.
This is just what I said, and therewith we are shown that our principle is una.s.sailable by experiment.
But then, what have we gained by this stroke? The principle is intact, but thenceforth of what use is it? It enabled us to foresee that in such or such circ.u.mstance we could count on such a total quant.i.ty of energy; it limited us; but now that this indefinite provision of new energy is placed at our disposal, we are no longer limited by anything; and, as I have written in 'Science and Hypothesis,' if a principle ceases to be fecund, experiment without contradicting it directly will nevertheless have condemned it.
_Future Mathematical Physics._--This, therefore, is not what would have to be done; it would be necessary to rebuild anew. If we were reduced to this necessity; we could moreover console ourselves. It would not be necessary thence to conclude that science can weave only a Penelope's web, that it can raise only ephemeral structures, which it is soon forced to demolish from top to bottom with its own hands.
As I have said, we have already pa.s.sed through a like crisis. I have shown you that in the second mathematical physics, that of the principles, we find traces of the first, that of central forces; it will be just the same if we must know a third. Just so with the animal that exuviates, that breaks its too narrow carapace and makes itself a fresh one; under the new envelope one will recognize the essential traits of the organism which have persisted.
We can not foresee in what way we are about to expand; perhaps it is the kinetic theory of gases which is about to undergo development and serve as model to the others. Then the facts which first appeared to us as simple thereafter would be merely resultants of a very great number of elementary facts which only the laws of chance would make cooperate for a common end. Physical law would then a.s.sume an entirely new aspect; it would no longer be solely a differential equation, it would take the character of a statistical law.
Perhaps, too, we shall have to construct an entirely new mechanics that we only succeed in catching a glimpse of, where, inertia increasing with the velocity, the velocity of light would become an impa.s.sable limit.
The ordinary mechanics, more simple, would remain a first approximation, since it would be true for velocities not too great, so that the old dynamics would still be found under the new. We should not have to regret having believed in the principles, and even, since velocities too great for the old formulas would always be only exceptional, the surest way in practise would be still to act as if we continued to believe in them. They are so useful, it would be necessary to keep a place for them. To determine to exclude them altogether would be to deprive oneself of a precious weapon. I hasten to say in conclusion that we are not yet there, and as yet nothing proves that the principles will not come forth from out the fray victorious and intact.[10]
[10] These considerations on mathematical physics are borrowed from my St. Louis address.
PART III
THE OBJECTIVE VALUE OF SCIENCE
CHAPTER X
IS SCIENCE ARTIFICIAL?
1. _The Philosophy of M. LeRoy_
There are many reasons for being sceptics; should we push this scepticism to the very end or stop on the way? To go to the end is the most tempting solution, the easiest and that which many have adopted, despairing of saving anything from the s.h.i.+pwreck.
Among the writings inspired by this tendency it is proper to place in the first rank those of M. LeRoy. This thinker is not only a philosopher and a writer of the greatest merit, but he has acquired a deep knowledge of the exact and physical sciences, and even has shown rare powers of mathematical invention. Let us recapitulate in a few words his doctrine, which has given rise to numerous discussions.
Science consists only of conventions, and to this circ.u.mstance solely does it owe its apparent cert.i.tude; the facts of science and, _a fortiori_, its laws are the artificial work of the scientist; science therefore can teach us nothing of the truth; it can only serve us as rule of action.
Here we recognize the philosophic theory known under the name of nominalism; all is not false in this theory; its legitimate domain must be left it, but out of this it should not be allowed to go.
This is not all; M. LeRoy's doctrine is not only nominalistic; it has besides another characteristic which it doubtless owes to M. Bergson, it is anti-intellectualistic. According to M. LeRoy, the intellect deforms all it touches, and that is still more true of its necessary instrument 'discourse.' There is reality only in our fugitive and changing impressions, and even this reality, when touched, vanishes.
And yet M. LeRoy is not a sceptic; if he regards the intellect as incurably powerless, it is only to give more scope to other sources of knowledge, to the heart, for instance, to sentiment, to instinct or to faith.
However great my esteem for M. LeRoy's talent, whatever the ingenuity of this thesis, I can not wholly accept it. Certes, I am in accord on many points with M. LeRoy, and he has even cited, in support of his view, various pa.s.sages of my writings which I am by no means disposed to reject. I think myself only the more bound to explain why I can not go with him all the way.
M. LeRoy often complains of being accused of scepticism. He could not help being, though this accusation is probably unjust. Are not appearances against him? Nominalist in doctrine, but realist at heart, he seems to escape absolute nominalism only by a desperate act of faith.
The fact is that anti-intellectualistic philosophy in rejecting a.n.a.lysis and 'discourse,' just by that condemns itself to being intransmissible; it is a philosophy essentially internal, or, at the very least, only its negations can be transmitted; what wonder then that for an external observer it takes the shape of scepticism?
Therein lies the weak point of this philosophy; if it strives to remain faithful to itself, its energy is spent in a negation and a cry of enthusiasm. Each author may repeat this negation and this cry, may vary their form, but without adding anything.
And, yet, would it not be more logical in remaining silent? See, you have written long articles; for that, it was necessary to use words. And therein have you not been much more 'discursive' and consequently much farther from life and truth than the animal who simply lives without philosophizing? Would not this animal be the true philosopher?
However, because no painter has made a perfect portrait, should we conclude that the best painting is not to paint? When a zoologist dissects an animal, certainly he 'alters it.' Yes, in dissecting it, he condemns himself to never know all of it; but in not dissecting it, he would condemn himself to never know anything of it and consequently to never see anything of it.
Certes, in man are other forces besides his intellect; no one has ever been mad enough to deny that. The first comer makes these blind forces act or lets them act; the philosopher must _speak_ of them; to speak of them, he must know of them the little that can be known, he should therefore _see_ them act. How? With what eyes, if not with his intellect? Heart, instinct, may guide it, but not render it useless; they may direct the look, but not replace the eye. It may be granted that the heart is the workman, and the intellect only the instrument.
Yet is it an instrument not to be done without, if not for action, at least for philosophizing? Therefore a philosopher really anti-intellectualistic is impossible. Perhaps we shall have to declare for the supremacy of action; always it is our intellect which will thus conclude; in allowing precedence to action it will thus retain the superiority of the thinking reed. This also is a supremacy not to be disdained.
Pardon these brief reflections and pardon also their brevity, scarcely skimming the question. The process of intellectualism is not the subject I wish to treat: I wish to speak of science, and about it there is no doubt; by definition, so to speak, it will be intellectualistic or it will not be at all. Precisely the question is, whether it will be.
2. _Science, Rule of Action_
For M. LeRoy, science is only a rule of action. We are powerless to know anything and yet we are launched, we must act, and at all hazards we have established rules. It is the aggregate of these rules that is called science.
It is thus that men, desirous of diversion, have inst.i.tuted rules of play, like those of tric-trac for instance, which, better than science itself, could rely upon the proof by universal consent. It is thus likewise that, unable to choose, but forced to choose, we toss up a coin, head or tail to win.
The rule of tric-trac is indeed a rule of action like science, but does any one think the comparison just and not see the difference? The rules of the game are arbitrary conventions and the contrary convention might have been adopted, _which would have been none the less good_. On the contrary, science is a rule of action which is successful, generally at least, and I add, while the contrary rule would not have succeeded.
If I say, to make hydrogen cause an acid to act on zinc, I formulate a rule which succeeds; I could have said, make distilled water act on gold; that also would have been a rule, only it would not have succeeded. If, therefore, scientific 'recipes' have a value, as rule of action, it is because we know they succeed, generally at least. But to know this is to know something and then why tell us we can know nothing?
Science foresees, and it is because it foresees that it can be useful and serve as rule of action. I well know that its previsions are often contradicted by the event; that shows that science is imperfect, and if I add that it will always remain so, I am certain that this is a prevision which, at least, will never be contradicted. Always the scientist is less often mistaken than a prophet who should predict at random. Besides the progress though slow is continuous, so that scientists, though more and more bold, are less and less misled. This is little, but it is enough.
I well know that M. LeRoy has somewhere said that science was mistaken oftener than one thought, that comets sometimes played tricks on astronomers, that scientists, who apparently are men, did not willingly speak of their failures, and that, if they should speak of them, they would have to count more defeats than victories.
That day, M. LeRoy evidently overreached himself. If science did not succeed, it could not serve as rule of action; whence would it get its value? Because it is 'lived,' that is, because we love it and believe in it? The alchemists had recipes for making gold, they loved them and had faith in them, and yet our recipes are the good ones, although our faith be less lively, because they succeed.
There is no escape from this dilemma; either science does not enable us to foresee, and then it is valueless as rule of action; or else it enables us to foresee, in a fas.h.i.+on more or less imperfect, and then it is not without value as means of knowledge.
It should not even be said that action is the goal of science; should we condemn studies of the star Sirius, under pretext that we shall probably never exercise any influence on that star? To my eyes, on the contrary, it is the knowledge which is the end, and the action which is the means.
If I felicitate myself on the industrial development, it is not alone because it furnishes a facile argument to the advocates of science; it is above all because it gives to the scientist faith in himself and also because it offers him an immense field of experience where he clashes against forces too colossal to be tampered with. Without this ballast, who knows whether he would not quit solid ground, seduced by the mirage of some scholastic novelty, or whether he would not despair, believing he had fas.h.i.+oned only a dream?
3. _The Crude Fact and the Scientific Fact_
What was most paradoxical in M. LeRoy's thesis was that affirmation that _the scientist creates the fact_; this was at the same time its essential point and it is one of those which have been most discussed.