Coral Reefs - BestLightNovel.com
You’re reading novel Coral Reefs Part 6 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
We might go even further, and a.s.sert as not improbable, that the first formation of the Maldiva Archipelago was due to a barrier-reef, of nearly the same dimensions with that of New Caledonia (Plate II., Figure 5), for if, in imagination, we complete the subsidence of that great island, we might antic.i.p.ate from the present broken condition of the northern portion of the reef, and from the almost entire absence of reefs on the eastern coast, that the barrier-reef after repeated subsidences, would become during its upward growth separated into distinct portions; and these portions would tend to a.s.sume an atoll-like structure, from the coral growing with vigour round their entire circ.u.mferences, when freely exposed to an open sea. As we have some large islands partly submerged with barrier-reefs marking their former limits, such as New Caledonia, so our theory makes it probable that there should be other large islands wholly submerged; and these, we may now infer, would be surmounted, not by one enormous atoll, but by several large elongated ones, like the atolls in the Maldiva group; and these again, during long periods of subsidence, would sometimes become dissevered into smaller atolls. I may add, that both in the Marshall and Caroline Archipelagoes, there are atolls standing close together, which have an evident relations.h.i.+p in form: we may suppose, in such cases, either that two or more encircled islands originally stood close together, and afforded bases for two or more atolls, or that one atoll has been dissevered. From the position, as well as form, of three atolls in the Caroline Archipelago (the Namourrek and Elato group), which are placed in an irregular circle, I am strongly tempted to believe that they have originated by the process of disseverment. (The same remark is, perhaps, applicable to the islands of Ollap, Fanadik, and Tamatam in the Caroline Archipelago, of which charts are given in the atlas of Duperrey's voyage: a line drawn through the linear reefs and lagoons of these three islands forms a semicircle. Consult also, the atlas of Lutke's voyage; and for the Marshall group that of Kotzebue; for the Gilbert group consult the atlas of Duperrey's voyage. Most of the points here referred to may, however, be seen in Krusenstern's general Atlas of the Pacific.)
IRREGULARLY FORMED ATOLLS.
In the Marshall group, Musquillo atoll consists of two loops united in one point; and Menchikoff atoll is formed of three loops, two of which (as may be seen in Figure 3, Plate II.) are connected by a mere ribbon-shaped reef, and the three together are sixty miles in length. In the Gilbert group some of the atolls have narrow strips of reef, like spurs, projecting from them. There occur also in parts of the open sea, a few linear and straight reefs, standing by themselves; and likewise some few reefs in the form of crescents, with their extremities more or less curled inwards. Now, the upward growth of a barrier-reef which fronted only one side of an island, or one side of an elongated island with its extremities (of which cases exist), would produce after the complete subsidence of the land, mere strips or crescent or hook-formed reefs: if the island thus partially fronted became divided during subsidence into two or more islands, these islands would be united together by linear reefs; and from the further growth of the coral along their sh.o.r.es together with subsidence, reefs of various forms might ultimately be produced, either atolls united together by linear reefs, or atolls with spurs projecting from them. Some, however, of the more simple forms above specified, might, as we have seen, be equally well produced by the coral peris.h.i.+ng during subsidence on part of the circ.u.mference of an atoll, whilst on the other parts it continued to grow up till it reached the surface.
THE GREAT CHAGOS BANK.
I have already shown that the submerged condition of the Great Chagos Bank (Plate II., Figure 1, with its section Figure 2), and of some other banks in the Chagos group, may in all probability be attributed to the coral having perished before or during the movements of subsidence, to which this whole area by our theory has been subjected. The external rim or upper ledge (shaded in the chart), consists of dead coral-rock thinly covered with sand; it lies at an average depth of between five and eight fathoms, and perfectly resembles in form the annular reef of an atoll. The banks of the second level, the boundaries of which are marked by dotted lines in the chart, lie from about fifteen to twenty fathoms beneath the surface; they are several miles broad, and terminate in a very steep slope round the central expanse. This central expanse I have already described, as consisting of a level muddy flat between thirty and forty fathoms deep.
The banks of the second level, might at first sight be thought a.n.a.logous to the internal step-like ledge of coral-rock which borders the lagoons of some atolls, but their much greater width, and their being formed of sand, are points of essential difference. On the eastern side of the atoll some of the banks are linear and parallel, resembling islets in a great river, and pointed directly towards a great breach on the opposite side of the atoll; these are best seen in the large published chart. I inferred from this circ.u.mstance, that strong currents sometimes set directly across this vast bank; and I have since heard from Captain Moresby that this is the case. I observed, also, that the channels or breaches through the rim, were all of the same depth as the central lagoon-like s.p.a.ce into which they lead; whereas the channels into the other atolls of the Chagos group, and as I believe into most other large atolls, are not nearly as deep as their lagoons: for instance at Peros Banhos, the channels are only of the same depth, namely between ten and twenty fathoms, as the bottom of the lagoon for a s.p.a.ce about a mile and a half in width round its sh.o.r.es, whilst the central expanse of the lagoon is from thirty-five to forty fathoms deep.
Now, if an atoll during a gradual subsidence once became entirely submerged, like the Great Chagos Bank, and therefore no longer exposed to the surf, very little sediment could be formed from it; and consequently the channels leading into the lagoon from not being filled up with drifted sand and coral detritus, would continue increasing in depth, as the whole sank down. In this case, we might expect that the currents of the open sea, instead of any longer sweeping round the submarine flanks, would flow directly through the breaches across the lagoon, removing in their course the finer sediment, and preventing its further acc.u.mulation. We should then have the submerged reef forming an external and upper rim of rock, and beneath this portion of the sandy bottom of the old lagoon, intersected by deep-water channels or breaches, and thus formed into separate marginal banks; and these would be cut off by steep slopes, overhanging the central s.p.a.ce, worn down by the pa.s.sage of the oceanic currents.
By these means, I have scarcely any doubt that the Great Chagos Bank has originated,--a structure which at first appeared to me far more anomalous than any I had met with. The process of formation is nearly the same with that, by which Mahlos Mahdoo had been trisected; but in the Chagos Bank the channels of the oceanic currents entering at several different quarters, have united in a central s.p.a.ce.
This great atoll-formed bank appears to be in an early stage of disseverment; should the work of subsidence go on, from the submerged and dead condition of the whole reef, and the imperfection of the south-east quarter a mere wreck would probably be left. The Pitt's Bank, situated not far southward, appears to be precisely in this state; it consists of a moderately level, oblong bank of sand, lying from 10 to 20 fathoms beneath the surface, with two sides protected by a narrow ledge of rock which is submerged between 5 and 8 fathoms. A little further south, at about the same distance as the southern rim of the Great Chagos Bank is from the northern rim, there are two other small banks with from 10 to 20 fathoms on them; and not far eastward soundings were struck on a sandy bottom, with between 110 and 145 fathoms. The northern portion with its ledge-like margin, closely resembles any one segment of the Great Chagos Bank, between two of the deep-water channels, and the scattered banks, southward appear to be the last wrecks of less perfect portions.
I have examined with care the charts of the Indian and Pacific Oceans, and have now brought before the reader all the examples, which I have met with, of reefs differing from the type of the cla.s.s to which they belong; and I think it has been satisfactorily shown, that they are all included in our theory, modified by occasional accidents which might have been antic.i.p.ated as probable. In this course we have seen, that in the lapse of ages encircling barrier-reefs are occasionally converted into atolls, the name of atoll being properly applicable, at the moment when the last pinnacle of encircled land sinks beneath the surface of the sea. We have, also, seen that large atolls during the progressive subsidence of the areas in which they stand, sometimes become dissevered into smaller ones; at other times, the reef-building polypifers having entirely perished, atolls are converted into atoll-formed banks of dead rock; and these again through further subsidence and the acc.u.mulation of sediment modified by the force of the oceanic currents, pa.s.s into level banks with scarcely any distinguis.h.i.+ng character. Thus may the history of an atoll be followed from its first origin, through the occasional accidents of its existence, to its destruction and final obliteration.
OBJECTIONS TO THE THEORY OF THE FORMATION OF ATOLLS AND BARRIER-REEFS.
The vast amount of subsidence, both horizontally or in area, and vertically or in depth, necessary to have submerged every mountain, even the highest, throughout the immense s.p.a.ces of ocean interspersed with atolls, will probably strike most people as a formidable objection to my theory. But as continents, as large as the s.p.a.ces supposed to have subsided, have been raised above the level of the sea,--as whole regions are now rising, for instance, in Scandinavia and South America,--and as no reason can be a.s.signed, why subsidences should not have occurred in some parts of the earth's crust on as great a scale both in extent and amount as those of elevation, objections of this nature strike me as of little force. The remarkable point is that movements to such an extent should have taken place within a period, during which the polypifers have continued adding matter on and above the same reefs. Another and less obvious objection to the theory will perhaps be advanced from the circ.u.mstance, of the lagoons within atolls and within barrier-reefs never having become in any one instance during prolonged subsidences of a greater depth than sixty fathoms, and seldom more than forty fathoms; but we already admit, if the theory be worth considering, that the rate of subsidence has not exceeded that of the upward growth of the coral on the exterior margin; we are, therefore, only further required to admit, that the subsidence has not exceeded in rate the filling up of the interior s.p.a.ces by the growth of the corals living there, and by the acc.u.mulation of sediment. As this filling up must take place very slowly within barrier-reefs lying far from the land, and within atolls which are of large dimensions and which have open lagoons with very few reefs, we are led to conclude that the subsidence thus counter-balanced, must have been slow in an extraordinary degree; a conclusion which accords with our only means, namely, with what is known of the rate and manner of recent elevatory movements, of judging by a.n.a.logy what is the probable rate of subsidence.
In this chapter it has, I think, been shown, that the theory of subsidence, which we were compelled to receive from the necessity of giving to the corals, in certain large areas, foundations at the requisite depth, explains both the normal structure and the less regular forms of those two great cla.s.ses of reefs, which have justly excited the astonishment of all persons who have sailed through the Pacific and Indian Oceans. But further to test the truth of the theory, a crowd of questions will occur to the reader: Do the different kinds of reefs, which have been produced by the same kind of movement, generally lie within the same areas? What is their relation of form and position,--for instance, do adjoining groups of atolls, and the separate atolls in these groups, bear the same relation to each other which islands do in common archipelagoes? Have we reason to believe, that where there are fringing-reefs, there has not lately been subsidence; or, for it is almost our only way of ascertaining this point, are there frequently proofs of recent elevation? Can we by this means account for the presence of certain cla.s.ses of reefs in some large areas, and their entire absence in others? Do the areas which have subsided, as indicated by the presence of atolls and barrier-reefs, and the areas which have remained stationary or have been upraised, as shown by fringing-reefs, bear any determinate relation to each other; and are the dimensions of these areas such as harmonise with the greatness of the subterranean changes, which, it must be supposed, have lately taken place beneath them?
Is there any connection between the movements thus indicated, and recent volcanic action? All these questions ought to receive answers in accordance with the theory; and if this can be satisfactorily shown, not only is the theory confirmed, but as deductions, the answers are in themselves important. Under this latter point of view, these questions will be chiefly considered in the following chapter.
(I may take this opportunity of briefly considering the appearances, which would probably be presented by a vertical and deep section across a coral formation (referring chiefly to an atoll), formed by the upward growth of coral during successive subsidences. This is a subject worthy of attention, as a means of comparison with ancient coral-strata. The circ.u.mferential parts would consist of ma.s.sive species, in a vertical position, with their interstices filled up with detritus; but this would be the part most subject to subsequent denudation and removal. It is useless to speculate how large a portion of the exterior annular reef would consist of upright coral, and how much of fragmentary rock, for this would depend on many contingencies,--such as on the rate of subsidence, occasionally allowing a fresh growth of coral to cover the whole surface, and on the breakers having force sufficient to throw fragments over this same s.p.a.ce.
The conglomerate which composes the base of the islets, would (if not removed by denudation together with the exterior reef on which it rests) be conspicuous from the size of the fragments,--the different degrees in which they have been rounded,--the presence of fragments of conglomerate torn up, rounded, and recemented,--and from the oblique stratification. The corals which lived in the lagoon-reefs at each successive level, would be preserved upright, and they would consist of many kinds, generally much branched. In this part, however, a very large proportion of the rock (and in some cases nearly all of it) would be formed of sedimentary matter, either in an excessively fine, or in a moderately coa.r.s.e state, and with the particles almost blended together. The conglomerate which was formed of rounded pieces of the branched corals, on the sh.o.r.es of the lagoon, would differ from that formed on the islets and derived from the outer coast; yet both might have acc.u.mulated very near each other. I have seen a conglomerate limestone from Devons.h.i.+re like a conglomerate now forming on the sh.o.r.es of the Maldiva atolls. The stratification taken as a whole, would be horizontal; but the conglomerate beds resting on the exterior reef, and the beds of sandstone on the sh.o.r.es of the lagoon (and no doubt on the external flanks) would probably be divided (as at Keeling atoll and at Mauritius) by numerous layers dipping at considerable angles in different directions. The calcareous sandstone and coral-rock would almost necessarily contain innumerable sh.e.l.ls, echini, and the bones of fish, turtle, and perhaps of birds; possibly, also, the bones of small saurians, as these animals find their way to the islands far remote from any continent. The large sh.e.l.ls of some species of Tridacna would be found vertically imbedded in the solid rock, in the position in which they lived.
We might expect also to find a mixture of the remains of pelagic and littoral animals in the strata formed in the lagoon, for pumice and the seeds of plants are floated from distant countries into the lagoons of many atolls: on the outer coast of Keeling atoll, near the mouth of the lagoon, the case of a pelagic Pteropodous animal was brought up on the arming of the sounding lead. All the loose blocks of coral on Keeling atoll were burrowed by vermiform animals; and as every cavity, no doubt, ultimately becomes filled with spathose limestone, slabs of the rock taken from a considerable depth, would, if polished, probably exhibit the excavations of such burrowing animals. The conglomerate and fine-grained beds of coral-rock would be hard, sonorous, white and composed of nearly pure calcareous matter; in some few parts, judging from the specimens at Keeling atoll, they would probably contain a small quant.i.ty of iron. Floating pumice and scoriae, and occasionally stones transported in the root of trees (see my "Journal of Researches," page 549) appear the only sources, through which foreign matter is brought to coral-formations standing in the open ocean.
The area over which sediment is transported from coral-reefs must be considerable: Captain Moresby informs me that during the change of monsoons the sea is discoloured to a considerable distance off the Maldiva and Chagos atolls. The sediment of fringing and barrier coral-reefs must be mingled with the mud, which is brought down from the land, and is transported seaward through the breaches, which occur in front of almost every valley. If the atolls of the larger archipelagoes were upraised, the bed of the ocean being converted into land, they would form flat-topped mountains, varying in diameter from a few miles (the smallest atolls being worn away) to sixty miles; and from being horizontally stratified and of similar composition, they would, as Mr. Lyell has remarked, falsely appear as if they had originally been united into one vast continuous ma.s.s. Such great strata of coral-rock would rarely be a.s.sociated with erupted volcanic matter, for this could only take place, as may be inferred from what follows in the next chapter, when the area, in which they were situated, commenced to rise, or at least ceased to subside. During the enormous period necessary to effect an elevation of the kind just alluded to, the surface would necessarily be denuded to a great thickness; hence it is highly improbable that any fringing-reef, or even any barrier-reef, at least of those encircling small islands, would be preserved. From this same cause, the strata which were formed within the lagoons of atolls and lagoon-channels of barrier-reefs, and which must consist in a large part of sedimentary matter, would more often be preserved to future ages, than the exterior solid reef, composed of ma.s.sive corals in an upright position; although it is on this exterior part that the present existence and further growth of atolls and barrier-reefs entirely depend.
CHAPTER VI.--ON THE DISTRIBUTION OF CORAL-REEFS WITH REFERENCE TO THE THEORY OF THEIR FORMATION.
(DESCRIPTION OF THE PLATES.
PLATE III.--MAP SHOWING THE DISTRIBUTION OF CORAL-REEFS AND ACTIVE VOLCANOES.
The principles, on which this map was coloured, are explained in the beginning of Chapter VI.; and the authorities for each particular spot are detailed in the Appendix to "Coral Reefs." The names not printed in upper case in the Index refer to the Appendix.)
Description of the coloured map.--Proximity of atolls and barrier-reefs.-- Relation in form and position of atolls with ordinary islands.--Direct evidence of subsidence difficult to be detected.--Proofs of recent elevation where fringing-reefs occur.--Oscillations of level.--Absence of active volcanoes in the areas of subsidence.--Immensity of the areas which have been elevated and have subsided.--Their relation to the present distribution of the land.--Areas of subsidence elongated, their intersection and alternation with those of elevation.--Amount and slow rate of the subsidence.--Recapitulation.
It will be convenient to give here a short account of the appended map (Plate III.) [Inasmuch as the coloured map would have proved too costly to be given in this series, the indications of colour have been replaced by numbers referring to the dotted groups of reefs, etc. The author's original wording, however, is retained in full, as it will be easy to refer to the map by the numbers, and thus the flow of the narrative is undisturbed.]: a fuller one, with the data for colouring each spot, is reserved for the Appendix; and every place there referred to may be found in the Index. A larger chart would have been desirable; but, small as the adjoined one is, it is the result of many months' labour. I have consulted, as far as I was able, every original voyage and map; and the colours were first laid down on charts on a larger scale. The same blue colour, with merely a difference in the depth of tint, is used for atolls or lagoon-islands, and barrier-reefs, for we have seen, that as far as the actual coral-formation is concerned, they have no distinguis.h.i.+ng character.
Fringing-reefs have been coloured red, for between them on the one hand, and barrier-reefs and atolls on the other, there is an important distinction with respect to the depth beneath the surface, at which we are compelled to believe their foundations lie. The two distinct colours, therefore, mark two great types of structure.
The DARK BLUE COLOUR [represented by (3) in our plate] represents atolls and submerged annular reefs, with deep water in their centres. I have coloured as atolls, a few low and small coral-islands, without lagoons; but this has been done only when it clearly appeared that they originally contained lagoons, since filled up with sediment: when there were not good grounds for this belief, they have been left uncoloured.
The PALE BLUE COLOUR [represented by (2)] represents barrier-reefs. The most obvious character of reefs of this cla.s.s is the broad and deep-water moat within the reef: but this, like the lagoons of small atolls, is liable to become filled up with detritus and with reefs of delicately branched corals: when, therefore, a reef round the entire circ.u.mference of an island extends very far into a profoundly deep sea, so that it can hardly be confounded with a fringing-reef which must rest on a foundation of rock within a small depth, it has been coloured pale blue, although it does not include a deep-water moat: but this has only been done rarely, and each case is distinctly mentioned in the Appendix.
The RED COLOUR (4) represents reefs fringing the land quite closely where the sea is deep, and where the bottom is gently inclined extending to a moderate distance from it, but not having a deep-water moat or lagoon-like s.p.a.ce parallel to the sh.o.r.e. It must be remembered that fringing-reefs are frequently BREACHED in front of rivers and valleys by deepish channels, where mud has been deposited. A s.p.a.ce of thirty miles in width has been coloured round or in front of the reefs of each cla.s.s, in order that the colours might be conspicuous on the appended map, which is reduced to so small a scale.
The VERMILLION SPOTS, and streaks (1) represent volcanoes now in action, or historically known to have been so. They are chiefly laid down from Von Buch's work on the Canary Islands; and my reasons for making a few alterations are given in the note below.
(I have also made considerable use of the geological part of Berghaus'
"Physical Atlas." Beginning at the eastern side of the Pacific, I have added to the number of the volcanoes in the southern part of the Cordillera, and have coloured Juan Fernandez according to observations collected during the voyage of the "Beagle" ("Geological Transactions,"
volume v., page 601.) I have added a volcano to Albemarle Island, one of the Galapagos Archipelago (the author's "Journal of Researches," page 457).
In the Sandwich group there are no active volcanoes, except at Hawaii; but the Rev. W. Ellis informs me, there are streams of lava apparently modern on Maui, having a very recent appearance, which can be traced to the craters whence they flowed. The same gentleman informs me, that there is no reason to believe that any active volcano exists in the Society Archipelago; nor are there any known in the Samoa or Navigator group, although some of the streams of lava and craters there appear recent. In the Friendly group, the Rev. J. Williams says ("Narrative of Missionary Enterprise," page 29) that Toofoa and Proby Islands are active volcanoes.
I infer from Hamilton's "Voyage in the 'Pandora'" (Page 95), that Proby Island is synonymous with Onouafou, but I have not ventured to colour it.
There can be no doubt respecting Toofoa, and Captain Edwards (Von Buch, page 386) found the lava of recent eruption at Amargura still smoking.
Berghaus marks four active volcanoes actually within the Friendly group; but I do not know on what authority: I may mention that Maurelle describes Latte as having a burnt-up appearance: I have marked only Toofoa and Amargura. South of the New Hebrides lies Matthews Rock, which is drawn and described as an active crater in the "Voyage of the 'Astrolabe'." Between it and the volcano on the eastern side of New Zealand, lies Brimstone Island, which from the high temperature of the water in the crater, may be ranked as active (Berghaus "Vorbemerk," II Lief. S. 56). Malte Brun, volume xii., page 231, says that there is a volcano near port St. Vincent in New Caledonia. I believe this to be an error, arising from a smoke seen on the OPPOSITE coast by Cook ("Second Voyage," volume ii., page 23) which smoke went out at night. The Mariana Islands, especially the northern ones, contain many craters (see Freycinet's "Hydrog. Descript.") which are not active. Von Buch, however, states (page 462) on the authority of La Peyrouse, that there are no less than seven volcanoes between these islands and j.a.pan. Gemelli Creri (Churchill's "Collect." volume iv., page 458), says there are two active volcanoes in lat.i.tude 23 deg 30', and in lat.i.tude 24 deg: but I have not coloured them. From the statements in Beechey's "Voyage" (page 518, 4to edition) I have coloured one in the northern part of the Bonin group. M. S. Julien has clearly made out from Chinese ma.n.u.scripts not very ancient ("Comptes Rendus," 1840, page 832), that there are two active volcanoes on the eastern side of Formosa. In Torres Straits, on Cap Island (9 deg 48' S., 142 deg 39' E.) a volcano was seen burning with great violence in 1793 by Captain Bampton (see Introduction to Flinders' "Voyage," page 41). Mr. M'Clelland (Report of Committee for investigating Coal in India, page 39) has shown that the volcanic band pa.s.sing through Barren Island must be extended northwards. It appears by an old chart, that Cheduba was once an active volcano (see also "Silliman's North American Journal", volume x.x.xviii., page 385). In Berghaus'
"Physical Atlas," 1840, No. 7 of Geological Part, a volcano on the coast of Pondicherry is said to have burst forth in 1757. Ordinaire ("Hist. Nat.
des Volcans," page 218) says that there is one at the mouth of the Persian Gulf, but I have not coloured it, as he gives no particulars. A volcano in Amsterdam, or St. Paul's, in the southern part of the Indian Ocean, has been seen ("Naut. Mag." 1838, page 842) in action. Dr. J. Allan, of Forres, informs me in a letter, that when he was at Joanna, he saw at night flames apparently volcanic, issuing from the chief Comoro Island, and that the Arabs a.s.sured him that they were volcanic, adding that the volcano burned more during the wet season. I have marked this as a volcano, though with some hesitation, on account of the possibility of the flame arising from gaseous sources.)
The uncoloured coasts consist, first and chiefly, of those, where there are no coral-reefs, or such small portions as to be quite insignificant.
Secondly, of those coasts where there are reefs, but where the sea is very shallow, for in this case the reefs generally lie far from the land, and become very irregular, in their forms: where they have not become irregular, they have been coloured. thirdly, if I had the means of ascertaining the fact, I should not colour a reef merely coating the edges of a submarine crater, or of a level submerged bank; for such superficial formations differ essentially, even when not in external appearance, from reefs whose foundations as well as superficies have been wholly formed by the growth of coral. Fourthly, in the Red Sea, and within some parts of the East Indian Archipelago (if the imperfect charts of the latter can be trusted), there are many scattered reefs, of small size, represented in the chart by mere dots, which rise out of deep water: these cannot be arranged under either of the three cla.s.ses: in the Red Sea, however, some of these little reefs, from their position, seem once to have formed parts of a continuous barrier. There exist, also, scattered in the open ocean, some linear and irregularly formed strips of coral-reef, which, as shown in the last chapter, are probably allied in their origin to atolls; but as they do not belong to that cla.s.s, they have not been coloured; they are very few in number and of insignificant dimensions. Lastly, some reefs are left uncoloured from the want of information respecting them, and some because they are of an intermediate structure between the barrier and fringing cla.s.ses. The value of the map is lessened, in proportion to the number of reefs which I have been obliged to leave uncoloured, although, in a theoretical point of view, few of them present any great difficulty: but their number is not very great, as will be found by comparing the map with the statements in the Appendix. I have experienced more difficulty in colouring fringing-reefs than in colouring barrier-reefs, as the former, from their much less dimensions, have less attracted the attention of navigators. As I have had to seek my information from all kinds of sources, and often from indirect ones, I do not venture to hope that the map is free from many errors. Nevertheless, I trust it will give an approximately correct view of the general distribution of the coral-reefs over the whole world (with the exception of some fringing-reefs on the coast of Brazil, not included within the limits of the map), and of their arrangement into the three great cla.s.ses, which, though necessarily very imperfect from the nature of the objects cla.s.sified, have been adopted by most voyagers. I may further remark, that the dark blue colour represents land entirely composed of coral-rock; the pale blue, land with a wide and thick border of coral-rock; and the red, a mere narrow fringe of coral-rock.
Looking now at the map under the theoretical point of view indicated in the last chapter, the two blue tints signify that the foundations of the reefs thus coloured have subsided to a considerable amount, at a slower rate than that of the upward growth of the corals, and that probably in many cases they are still subsiding. The red signifies that the sh.o.r.es which support fringing-reefs have not subsided (at least to any considerable amount, for the effects of a subsidence on a small scale would in no case be distinguishable); but that they have remained nearly stationary since the period when they first became fringed by reefs; or that they are now rising or have been upraised, with new lines of reefs successively formed on them: these latter alternatives are obviously implied, as newly formed lines of sh.o.r.e, after elevations of the land, would be in the same state with respect to the growth of fringing-reefs, as stationary coasts. If during the prolonged subsidence of a sh.o.r.e, coral-reefs grew for the first time on it, or if an old barrier-reef were destroyed and submerged, and new reefs became attached to the land, these would necessarily at first belong to the fringing cla.s.s, and, therefore, be coloured red, although the coast was sinking: but I have no reason to believe, that from this source of error, any coast has been coloured wrongly with respect to movement indicated.
Well characterised atolls and encircling barrier-reefs, where several occur in a group, or a single barrier-reef if of large dimensions, leave scarcely any doubt on the mind respecting the movement by which they have been produced; and even a small amount of subsequent elevation is soon betrayed.
The evidence from a single atoll or a single encircling barrier-reef, must be received with some caution, for the former may possibly be based upon a submerged crater or bank, and the latter on a submerged margin of sediment, or of worn-down rock. From these remarks we may with greater certainty infer that the s.p.a.ces, especially the larger ones, tinted blue in the map, have subsided, than that the red s.p.a.ces have remained stationary, or have been upraised.
ON THE GROUPING OF THE DIFFERENT CLa.s.sES OF REEFS.
Having made these preliminary remarks, I will consider first how far the grouping of the different kinds of coral-islands and reefs is corroborative of the truth of the theory. A glance at the map shows that the reefs, coloured blue and red, produced under widely different conditions, are not indiscriminately mixed together. Atolls and barrier-reefs, on the other hand, as may be seen by the two blue tints, generally lie near each other; and this would be the natural result of both having been produced during the subsidence of the areas in which they stand. Thus, the largest group of encircled islands is that of the Society Archipelago; and these islands are surrounded by atolls, and only separated by a narrow s.p.a.ce from the large group of Low atolls. In the midst of the Caroline atolls, there are three fine encircled islands. The northern point of the barrier-reef of New Caledonia seems itself, as before remarked, to form a complete large atoll. The great Australian barrier is described as including both atolls and small encircled islands. Captain King (Sailing directions, appended to volume ii. of his "Surveying Voyage to Australia.") mentions many atoll-formed and encircling coral-reefs, some of which lie within the barrier, and others may be said (for instance between lat.i.tude 16 deg and 13 deg) to form part of it. Flinders ("Voyage to Terra Australis," volume ii. page 336.) has described an atoll-formed reef in lat.i.tude 10 deg, seven miles long and from one to three broad, resembling a boot in shape, with apparently very deep water within. Eight miles westward of this, and forming part of the barrier, lie the Murray Islands, which are high and are encircled. In the Corallian Sea, between the two great barriers of Australia and New Caledonia, there are many low islets and coral-reefs, some of which are annular, or horse-shoe shaped. Observing the smallness of the scale of the map, the parallels of lat.i.tude being nine hundred miles apart, we see that none of the large groups of reefs and islands supposed to have been produced by long-continued subsidence, lie near extensive lines of coast coloured red, which are supposed to have remained stationary since the growth of their reefs, or to have been upraised and new lines of reefs formed on them. Where the red and blue circles do occur near each other, I am able, in several instances, to show that there have been oscillations of level, subsidence having preceded the elevation of the red spots; and elevation having preceded the subsidence of the blue spots: and in this case the juxtaposition of reefs belonging to the two great types of structure is little surprising. We may, therefore, conclude that the proximity in the same areas of the two cla.s.ses of reefs, which owe their origin to the subsidence of the earth's crust, and their separation from those formed during its stationary or uprising condition, holds good to the full extent, which might have been antic.i.p.ated by our theory.
As groups of atolls have originated in the upward growth, at each fresh sinking of the land, of those reefs which primarily fringed the sh.o.r.es of one great island, or of several smaller ones; so we might expect that these rings of coral-rock, like so many rude outline charts, will still retain some traces of the general form, or at least general range, of the land, round which they were first modelled. That this is the case with the atolls in the Southern Pacific as far as their range is concerned, seems highly probable, when we observe that the three princ.i.p.al groups are directed in north-west and south-east lines, and that nearly all the land in the S. Pacific ranges in this same direction; namely, N. Western Australia, New Caledonia, the northern half of New Zealand, the New Hebrides, Saloman, Navigator, Society, Marquesas, and Austral archipelagoes: in the Northern Pacific, the Caroline atolls abut against the north-west line of the Marshall atolls, much in the same manner as the east and west line of islands from Ceram to New Britain do on New Ireland: in the Indian Ocean the Laccadive and Maldiva atolls extend nearly parallel to the western and mountainous coast of India. In most respects, there is a perfect resemblance with ordinary islands in the grouping of atolls and in their form: thus the outline of all the larger groups is elongated; and the greater number of the individual atolls are elongated in the same direction with the group, in which they stand. The Chagos group is less elongated than is usual with other groups, and the individual atolls in it are likewise but little elongated; this is strikingly seen by comparing them with the neighbouring Maldiva atolls. In the Marshall and Maldiva archipelagoes, the atolls are ranged in two parallel lines, like the mountains in a great double mountain-chain. Some of the atolls, in the larger archipelagoes, stand so near to each other, and have such an evident relations.h.i.+p in form, that they compose little sub-groups: in the Caroline Archipelago, one such sub-group consists of Pouynipete, a lofty island encircled by a barrier-reef, and separated by a channel only four miles and a half wide from Andeema atoll, with a second atoll a little further off.
In all these respects an examination of a series of charts will show how perfectly groups of atolls resemble groups of common islands.
ON THE DIRECT EVIDENCE OF THE BLUE s.p.a.cES IN THE MAP HAVING SUBSIDED DURING THE UPWARD GROWTH OF THE REEFS SO COLOURED, AND OF THE RED s.p.a.cES HAVING REMAINED STATIONARY, OR HAVING BEEN UPRAISED.
With respect to subsidence, I have shown in the last chapter, that we cannot expect to obtain in countries inhabited only by semi-civilised races, demonstrative proofs of a movement, which invariably tends to conceal its own evidence. But on the coral-islands supposed to have been produced by subsidence, we have proofs of changes in their external appearance--of a round of decay and renovation--of the last vestiges of land on some--of its first commencement on others: we hear of storms desolating them to the astonishment of their inhabitants: we know by the great fissures with which some of them are traversed, and by the earthquakes felt under others, that subterranean disturbances of some kind are in progress. These facts, if not directly connected with subsidence, as I believe they are, at least show how difficult it would be to discover proofs of such movement by ordinary means. At Keeling atoll, however, I have described some appearances, which seem directly to show that subsidence did take place there during the late earthquakes. Vanikoro, according to Chevalier Dillon (See Captain Dillon's "Voyage in search of La Peyrouse." M. Cordier in his "Report on the Voyage of the 'Astrolabe'"
(page cxi., volume i.), speaking of Vanikoro, says the sh.o.r.es are surrounded by reefs of madrepore, "qu'on a.s.sure etre de formation tout-a-fait moderne." I have in vain endeavoured to learn some further particulars about this remarkable pa.s.sage. I may here add, that according to our theory, the island of Pouynipete (Plate I., Figure 7), in the Caroline Archipelago, being encircled by a barrier-reef, must have subsided. In the "New S. Wales Lit. Advert." February 1835 (which I have seen through the favour of Dr. Lloghtsky), there is an account of this island (subsequently confirmed by Mr. Campbell), in which it is said, "At the N.E. end, at a place called Tamen, there are ruins of a town, NOW ONLY accessible by boats, the waves REACHING TO THE STEPS OF The HOUSES."
Judging from this pa.s.sage, one would be tempted to conclude that the island must have subsided, since these houses were built. I may, also, here append a statement in Malte Brun (volume ix., page 775, given without any authority), that the sea gains in an extraordinary manner on the coast of Cochin China, which lies in front and near the subsiding coral-reefs in the China Sea: as the coast is granitic, and not alluvial, it is scarcely possible that the encroachment of the sea can be owing to the was.h.i.+ng away of the land; and if so, it must be due to subsidence.), is often violently shaken by earthquakes, and there, the unusual depth of the channel between the sh.o.r.e and the reef,--the almost entire absence of islets on the reef,-- its wall-like structure on the inner side, and the small quant.i.ty of low alluvial land at the foot of the mountains, all seem to show that this island has not remained long at its present level, with the lagoon-channel subjected to the acc.u.mulation of sediment, and the reef to the wear and tear of the breakers. At the Society Archipelago, on the other hand, where a slight tremor is only rarely felt, the shoaliness of the lagoon-channels round some of the islands, the number of islets formed on the reefs of others, and the broad belt of low land at the foot of the mountains, indicate that, although there must have been great subsidence to have produced the barrier-reefs, there has since elapsed a long stationary period.
(Mr. Couthouy states ("Remarks," page 44) that at Tahiti and Eimeo the s.p.a.ce between the reef and the sh.o.r.e has been nearly filled up by the extension of those coral-reefs, which within most barrier-reefs merely fringe the land. From this circ.u.mstance, he arrives at the same conclusion as I have done, that the Society Islands since their subsidence, have remained stationary during a long period; but he further believes that they have recently commenced rising, as well as the whole area of the Low Archipelago. He does not give any detailed proofs regarding the elevation of the Society Islands, but I shall refer to this subject in another part of this chapter. Before making some further comments, I may observe how satisfactory it is to me, to find Mr. Couthouy affirming, that "having personally examined a large number of coral-islands, and also residing eight months among the volcanic cla.s.s, having sh.o.r.e and partially encircling reefs, I may be permitted to state that my own observations have impressed a conviction of the correctness of the theory of Mr. Darwin."
This gentleman believes, that subsequently to the subsidence by which the atolls in the Low Archipelago were produced, the whole area has been elevated to the amount of a few feet; this would indeed be a remarkable fact; but as far as I am able to judge, the grounds of his conclusion are not sufficiently strong. He states that he found in almost every atoll which he visited, the sh.o.r.es of the lagoon raised from eighteen to thirty inches above the sea-level, and containing imbedded Tridacnae and corals standing as they grew; some of the corals were dead in their upper parts, but below a certain line they continued to flourish. In the lagoons, also, he frequently met with cl.u.s.ters of Madrepore, with their extremities standing from one inch to a foot above the surface of the water. Now, these appearances are exactly what I should have expected, without any subsequent elevation having taken place; and I think Mr. Couthouy has not borne in mind the indisputable fact, that corals, when constantly bathed by the surf, can exist at a higher level than in quite tranquil water, as in a lagoon. As long, therefore, as the waves continued at low water to break entirely over parts of the annular reef of an atoll, submerged to a small depth, the corals and sh.e.l.ls attached on these parts might continue living at a level above the smooth surface of the lagoon, into which the waves rolled; but as soon as the outer edge of the reef grew up to its utmost possible height, or if the reef were very broad nearly to that height, the force of the breakers would be checked, and the corals and sh.e.l.ls on the inner parts near the lagoon would occasionally be left dry, and thus be partially or wholly destroyed. Even in atolls, which have not lately subsided, if the outer margin of the reef continued to increase in breadth seaward (each fresh zone of corals rising to the same vertical height as at Keeling atoll), the line where the waves broke most heavily would advance outwards, and therefore the corals, which when living near the margin, were washed by the breaking waves during the whole of each tide, would cease being so, and would therefore be left on the backward part of the reef standing exposed and dead. The case of the madrepores in the lagoons with the tops of their branches exposed, seems to be an a.n.a.logous fact, to the great fields of dead but upright corals in the lagoon of Keeling atoll; a condition of things which I have endeavoured to show, has resulted from the lagoon having become more and more enclosed and choked up with reefs, so that during high winds, the rising of the tide (as observed by the inhabitants) is checked, and the corals, which had formerly grown to the greatest possible height, are occasionally exposed, and thus are killed: and this is a condition of things, towards which almost every atoll in the intervals of its subsidence must be tending. Or if we look to the state of an atoll directly after a subsidence of some fathoms, the waves would roll heavily over the entire circ.u.mference of the reef, and the surface of the lagoon would, like the ocean, never be quite at rest, and therefore the corals in the lagoon, from being constantly laved by the rippling water, might extend their branches to a little greater height than they could, when the lagoon became enclosed and protected. Christmas atoll (2 deg N.
lat.i.tude) which has a very shallow lagoon, and differs in several respects from most atolls, possibly may have been elevated recently; but its highest part appears (Couthouy, page 46) to be only ten feet above the sea-level.
The facts of a second cla.s.s, adduced by Mr. Couthouy, in support of the alleged recent elevation of the Low Archipelago, are not all (especially those referring to a shelf of rock) quite intelligible to me; he believes that certain enormous fragments of rock on the reef, must have been moved into their present position, when the reef was at a lower level; but here again the force of the breakers on any inner point of the reef being diminished by its outward growth without any change in its level, has not, I think, been borne in mind. We should, also, not overlook the occasional agency of waves caused by earthquakes and hurricanes. Mr. Couthouy further argues, that since these great fragments were deposited and fixed on the reef, they have been elevated; he infers this from the greatest amount of erosion not being near their bases, where they are unceasingly washed by the reflux of the tides, but at some height on their sides, near the line of high-water mark, as shown in an accompanying diagram. My former remark again applies here, with this further observation, that as the waves have to roll over a wide s.p.a.ce of reef before they reach the fragments, their force must be greatly increased with the increasing depth of water as the tide rises, and therefore I should have expected that the chief line of present erosion would have coincided with the line of high-water mark; and if the reef had grown outwards, that there would have been lines of erosion at greater heights. The conclusion, to which I am finally led by the interesting observations of Mr. Couthouy is, that the atolls in the Low Archipelago have, like the Society Islands, remained at a stationary level for a long period: and this probably is the ordinary course of events, subsidence supervening after long intervals of rest.)
Turning now to the red colour; as on our map, the areas which have sunk slowly downwards to great depths are many and large, we might naturally have been led to conjecture, that with such great changes of level in progress, the coasts which have been fringed probably for ages (for we have no reason to believe that coral-reefs are of short duration), would not have remained all this time stationary, but would frequently have undergone movements of elevation. This supposition, we shall immediately see, holds good to a remarkable extent; and although a stationary condition of the land can hardly ever be open to proof, from the evidence being only negative, we are, in some degree, enabled to ascertain the correctness of the parts coloured red on the map, by the direct testimony of upraised organic remains of a modern date. Before going into the details on this head (printed in small type), I may mention, that when reading a memoir on coral formations by MM. Quoy and Gaimard ("Annales des Sciences Nat." tom.
vi., page 279, etc.) I was astonished to find, for I knew that they had crossed both the Pacific and Indian Oceans, that their descriptions were applicable only to reefs of the fringing cla.s.s; but my astonishment ended satisfactorily, when I discovered that, by a strange chance, all the islands which these eminent naturalists had visited, though several in number, namely, the Mauritius, Timor, New Guinea, the Mariana, and Sandwich Archipelagoes, could be shown by their own statements to have been elevated within a recent geological era.
In the eastern half of the Pacific, the SANDWICH Islands are all fringed, and almost every naturalist who has visited them, has remarked on the abundance of elevated corals and sh.e.l.ls, apparently identical with living species. The Rev. W. Ellis informs me, that he has noticed round several parts of Hawaii, beds of coral-detritus, about twenty feet above the level of the sea, and where the coast is low they extend far inland. Upraised coral-rock forms a considerable part of the borders of Oahu; and at Elizabeth Island ("Zoology of Captain Beechey's Voyage," page 176. See also MM. Quoy and Gaimard in "Annales de Scien. Nat." tom. vi.) it composes three strata, each about ten feet thick. Nihau, which forms the northern, as Hawaii does the southern end of the group (350 miles in length), likewise seems to consist of coral and volcanic rocks. Mr. Couthouy ("Remarks on Coral Formations," page 51.) has lately described with interesting details, several upraised beaches, ancient reefs with their surfaces perfectly preserved, and beds of recent sh.e.l.ls and corals, at the islands of Maui, Morokai, Oahu, and Tauai (or Kauai) in this group. Mr.
Pierce, an intelligent resident at Oahu, is convinced, from changes which have taken place within his memory, during the last sixteen years, "that the elevation is at present going forward at a very perceptible rate." The natives at Kauai state that the land is there gaining rapidly on the sea, and Mr. Couthouy has no doubt, from the nature of the strata, that this has been effected by an elevation of the land.
In the southern part of the Low Archipelago, Elizabeth Island is described by Captain Beechey (Beechey's "Voyage in the Pacific," page 46, 4to edition.), as being quite flat, and about eighty feet in height; it is entirely composed of dead corals, forming a honeycombed, but compact rock.
In cases like this, of an island having exactly the appearance, which the elevation of any one of the smaller surrounding atolls with a shallow lagoon would present, one is led to conclude (with little better reason, however, than the improbability of such small and low fabrics lasting, for an immense period, exposed to the many destroying agents of nature), that the elevation has taken place at an epoch not geologically remote. When merely the surface of an island of ordinary formation is strewed with marine bodies, and that continuously, or nearly so, from the beach to a certain height, and not above that height, it is exceedingly improbable that such organic remains, although they may not have been specially examined, should belong to any ancient period. It is necessary to bear these remarks in mind, in considering the evidence of the elevatory movements in the Pacific and Indian Oceans, as it does not often rest on specific determinations, and therefore should be received with caution.
Six of the COOK AND AUSTRAL Islands (S.W. of the Society group), are fringed; of these, five were described to me by the Rev. J. Williams, as formed of coral-rock, a.s.sociated with some basalt in Mangaia), and the sixth as lofty and basaltic. Mangaia is nearly three hundred feet high, with a level summit; and according to Mr. S. Wilson (Couthouy's "Remarks,"
page 34.) it is an upraised reef; "and there are in the central hollow, formerly the bed of the lagoon, many scattered patches of coral-rock, some of them raised to a height of forty feet." These knolls of coral-rock were evidently once separate reefs in the lagoon of an atoll. Mr. Martens, at Sydney, informed me that this island is surrounded by a terrace-like plain at about the height of a hundred feet, which probably marks a pause in its elevation. From these facts we may infer, perhaps, that the Cook and Austral Islands have been upheaved at a period probably not very remote.