BestLightNovel.com

The Student's Elements of Geology Part 76

The Student's Elements of Geology - BestLightNovel.com

You’re reading novel The Student's Elements of Geology Part 76 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

Let a-b, Figure 633, be a line of fracture traversing a rock, and let a-b, Figure 634, represent the same line. Now, if we cut in two a piece of paper representing this line, and then move the lower portion of this cut paper sideways from a to a', taking care that the two pieces of paper still touch each other at the points 1, 2, 3, 4, 5, we obtain an irregular aperture at c, and isolated cavities at d, d, d, and when we compare such figures with nature we find that, with certain modifications, they represent the interior of faults and mineral veins. If, instead of sliding the cut paper to the right hand, we move the lower part towards the left, about the same distance that it was previously slid to the right, we obtain considerable variation in the cavities so produced, two long irregular open s.p.a.ces, f, f, Figure 635, being then formed. This will serve to show to what slight circ.u.mstances considerable variations in the character of the openings between unevenly fractured surfaces may be due, such surfaces being moved upon each other, so as to have numerous points of contact.

(FIGURE 636. Nipped ores where the course of a vein departs from verticality.)

Most lodes are perpendicular to the horizon, or nearly so; but some of them have a considerable inclination or "hade," as it is termed, the angles of dip being very various. The course of a vein is frequently very straight; but if tortuous, it is found to be choked up with clay, stones, and pebbles, at points where it departs most widely from verticality. Hence at places, such as a, Figure 636, the miner complains that the ores are "nipped," or greatly reduced in quant.i.ty, the s.p.a.ce for their free deposition having been interfered with in consequence of the pre-occupancy of the lode by earthy materials. When lodes are many fathoms wide, they are usually filled for the most part with earthy matter, and fragments of rock, through which the ores are disseminated. The metallic substances frequently coat or encircle detached pieces of rock, which our miners call "horses" or "riders." That we should find some mineral veins which split into branches is also natural, for we observe the same in regard to open fissures.

CHEMICAL DEPOSITS IN VEINS.

If we now turn from the mechanical to the chemical agencies which have been instrumental in the production of mineral veins, it may be remarked that those parts of fissures which were choked up with the ruins of fractured rocks must always have been filled with water; and almost every vein has probably been the channel by which hot springs, so common in countries of volcanoes and earthquakes, have made their way to the surface. For we know that the rents in which ores abound extend downward to vast depths, where the temperature of the interior of the earth is more elevated. We also know that mineral veins are most metalliferous near the contact of Plutonic and stratified formations, especially where the former send veins into the latter, a circ.u.mstance which indicates an original proximity of veins at their inferior extremity to igneous and heated rocks. It is moreover acknowledged that even those mineral and thermal springs which, in the present state of the globe, are far from volcanoes, are nevertheless observed to burst out along great lines of upheaval and dislocation of rocks. (See Dr. Daubeny's Volcanoes.) It is also ascertained that all the substances with which hot springs are impregnated agree with those discharged in a gaseous form from volcanoes. Many of these bodies occur as vein-stones; such as silex, carbonate of lime, sulphur, fluor-spar, sulphate of barytes, magnesia, oxide of iron, and others. I may add that, if veins have been filled with gaseous emanations from ma.s.ses of melted matter, slowly cooling in the subterranean regions, the contraction of such ma.s.ses as they pa.s.s from a plastic to a solid state would, according to the experiments of Deville on granite (a rock which may be taken as a standard), produce a reduction in volume amounting to 10 per cent. The slow crystallisation, therefore, of such Plutonic rocks supplies us with a force not only capable of rending open the inc.u.mbent rocks by causing a failure of support, but also of giving rise to faults whenever one portion of the earth's crust subsides slowly while another contiguous to it happens to rest on a different foundation, so as to remain unmoved.

Although we are led to infer, from the foregoing reasoning, that there has often been an intimate connection between metalliferous veins and hot springs holding mineral matter in solution, yet we must not on that account expect that the contents of hot springs and mineral veins would be identical. On the contrary, M. E. de Beaumont has judiciously observed that we ought to find in veins those substances which, being least soluble, are not discharged by hot springs-- or that cla.s.s of simple and compound bodies which the thermal waters ascending from below would first precipitate on the walls of a fissure, as soon as their temperature began slightly to diminish. The higher they mount towards the surface, the more will they cool, till they acquire the average temperature of springs, being in that case chiefly charged with the most soluble substances, such as the alkalies, soda and potash. These are not met with in veins, although they enter so largely into the composition of granitic rocks. (Bulletin 4 page 1278.)

To a certain extent, therefore, the arrangement and distribution of metallic matter in veins may be referred to ordinary chemical action, or to those variations in temperature which waters holding the ores in solution must undergo, as they rise upward from great depths in the earth. But there are other phenomena which do not admit of the same simple explanation. Thus, for example, in Derbys.h.i.+re, veins containing ores of lead, zinc, and copper, but chiefly lead, traverse alternate beds of limestone and greenstone. The ore is plentiful where the walls of the rent consist of limestone, but is reduced to a mere string when they are formed of greenstone, or "toad-stone," as it is called provincially. Not that the original fissure is narrower where the greenstone occurs, but because more of the s.p.a.ce is there filled with vein-stones, and the waters at such points have not parted so freely with their metallic contents.

"Lodes in Cornwall," says Mr. Robert W. Fox, "are very much influenced in their metallic riches by the nature of the rock which they traverse, and they often change in this respect very suddenly, in pa.s.sing from one rock to another. Thus many lodes which yield abundance of ore in granite, are unproductive in clay- slate, or killas and vice versa.

SUPPOSED RELATIVE AGE OF THE DIFFERENT METALS.

After duly reflecting on the facts above described, we can not doubt that mineral veins, like eruptions of granite or trap, are referable to many distinct periods of the earth's history, although it may be more difficult to determine the precise age of veins; because they have often remained open for ages, and because, as we have seen, the same fissure, after having been once filled, has frequently been re-opened or enlarged. But besides this diversity of age, it has been supposed by some geologists that certain metals have been produced exclusively in earlier, others in more modern times; that tin, for example, is of higher antiquity than copper, copper than lead or silver, and all of them more ancient than gold. I shall first point out that the facts once relied upon in support of some of these views are contradicted by later experience, and then consider how far any chronological order of arrangement can be recognised in the position of the precious and other metals in the earth's crust.

In the first place, it is not true that veins in which tin abounds are the oldest lodes worked in Great Britain. The government survey of Ireland has demonstrated that in Wexford veins of copper and lead (the latter as usual being argentiferous) are much older than the tin of Cornwall. In each of the two countries a very similar series of geological changes has occurred at two distinct epochs-- in Wexford, before the Devonian strata were deposited; in Cornwall, after the Carboniferous epoch. To begin with the Irish mining district: We have granite in Wexford traversed by granite veins, which veins also intrude themselves into the Silurian strata, the same Silurian rocks as well as the veins having been denuded before the Devonian beds were superimposed. Next we find, in the same county, that elvans, or straight dikes of porphyritic granite, have cut through the granite and the veins before mentioned, but have not penetrated the Devonian rocks. Subsequently to these elvans, veins of copper and lead were produced, being of a date certainly posterior to the Silurian, and anterior to the Devonian; for they do not enter the latter, and, what is still more decisive, streaks or layers of derivative copper have been found near Wexford in the Devonian, not far from points where mines of copper are worked in the Silurian strata.

Although the precise age of such copper lodes can not be defined, we may safely affirm that they were either filled at the close of the Silurian or commencement of the Devonian period. Besides copper, lead, and silver, there is some gold in these ancient or primary metalliferous veins. A few fragments also of tin found in Wicklow in the drift are supposed to have been derived from veins of the same age. (Sir H. De la Beche MS. Notes on Irish Survey.)

Next, if we turn to Cornwall, we find there also the monuments of a very a.n.a.logous sequence of events. First, the granite was formed; then, about the same period, veins of fine-grained granite, often tortuous (see Figure 614), penetrating both the outer crust of granite and the adjoining fossiliferous or primary rocks, including the coal-measures; thirdly, elvans, holding their course straight through granite, granitic veins, and fossiliferous slates; fourthly, veins of tin also containing copper, the first of those eight systems of fissures of different ages already alluded to. Here, then, the tin lodes are newer than the elvans. It has, indeed, been stated by some Cornish miners that the elvans are in some instances posterior to the oldest tin-bearing lodes, but the observations of Sir H. de la Beche during the survey led him to an opposite conclusion, and he has shown how the cases referred to in corroboration can be otherwise interpreted. (Report on the Geology of Cornwall page 310.) We may, therefore, a.s.sert that the most ancient Cornish lodes are younger than the coal- measures of that part of England, and it follows that they are of a much later date than the Irish copper and lead of Wexford and some adjoining counties. How much later, it is not so easy to declare, although probably they are not newer than the beginning of the Permian period, as no tin lodes have been discovered in any red sandstone which overlies the coal in the south-west of England.

There are lead veins in Glamorgans.h.i.+re which enter the lias, and others near Frome, in Somersets.h.i.+re, which have been traced into the Inferior Oolite. In Bohemia, the rich veins of silver of Joachimsthal cut through basalt containing olivine, which overlies tertiary lignite, in which are leaves of dicotyledonous trees. This silver, therefore, is decidedly a tertiary formation. In regard to the age of the gold of the Ural mountains, in Russia, which, like that of California, is obtained chiefly from auriferous alluvium, it occurs in veins of quartz in the schistose and granitic rocks of that chain, and is supposed by Sir R. Murchison, MM. Deverneuil and Keyserling to be newer than the syenitic granite of the Ural-- perhaps of tertiary date. They observe that no gold has yet been found in the Permian conglomerates which lie at the base of the Ural Mountains, although large quant.i.ties of iron and copper detritus are mixed with the pebbles of those Permian strata. Hence it seems that the Uralian quartz veins, containing gold and platinum, were not formed, or certainly not exposed to aqueous denudation, during the Permian era.

In the auriferous alluvium of Russia, California, and Australia, the bones of extinct land-quadrupeds have been met with, those of the mammoth being common in the gravel at the foot of the Ural Mountains, while in Australia they consist of huge marsupials, some of them of the size of the rhinoceros and allied to the living wombat. They belong to the genera Diprotodon and Nototherium of Professor Owen. The gold of Northern Chili is a.s.sociated in the mines of Los Hornos with copper pyrites, in veins traversing the cretaceo-oolitic formations, so-called because its fossils have the character partly of the cretaceous and partly of the oolitic fauna of Europe. (Darwin's South America page 209 etc.) The gold found in the United States, in the mountainous parts of Virginia, North and South Carolina, and Georgia, occurs in metamorphic Silurian strata, as well as in auriferous gravel derived from the same.

Gold has now been detected in almost every kind of rock, in slate, quartzite, sandstone, limestone, granite, and serpentine, both in veins and in the rocks themselves at short distances from the veins. In Australia it has been worked successfully not only in alluvium, but in vein-stones in the native rock, generally consisting of Silurian shales and slates. It has been traced on that continent over more than nine degrees of lat.i.tude (between the parallels of 30 degrees and 39 degrees S.), and over twelve of longitude, and yielded in 1853 an annual supply equal, if not superior, to that of California; nor is there any apparent prospect of this supply diminis.h.i.+ng, still less of the exhaustion of the gold-fields.

ORIGIN OF GOLD IN CALIFORNIA.

Mr. J. Arthur Phillips, in his treatise "On the Gold Fields of California," has shown that the ore in the gold workings is derived from drifts, or gravel clay, and sand, of two distinct geological ages, both comparatively modern, but belonging to different river-systems, the older of which is so ancient as to be capped by a thick sheet of lava divided by basaltic columns. (Proceedings of the Royal Society 1868 page 294.) The auriferous quartz of these drifts is derived from veins apparently due to hydrothermal agency, proceeding from granite and penetrating strata supposed to be of Jura.s.sic and Tria.s.sic date. The fossil wood of the drift is sometimes beautifully silicified, and occasionally the trunks of trees are replaced by iron pyrites, but gold seems not to have been found as in the pyrites of similarly petrified trees in the drift of Australia.

The formation of recent metalliferous veins is now going on, according to Mr.

Phillips, in various parts of the Pacific coast. Thus, for example, there are fissures at the foot of the eastern declivity of the Sierra Nevada in the state of that name, from which boiling water and steam escape, forming siliceous incrustations on the sides of the fissures. In one case, where the fissure is partially filled up with silica inclosing iron and copper pyrites, gold has also been found in the vein-stone.

It has been remarked by M. de Beaumont, that lead and some other metals are found in dikes of basalt and greenstone, as well as in mineral veins connected with trap-rock, whereas tin is met with in granite and in veins a.s.sociated with the Plutonic series. If this rule hold true generally, the geological position of tin accessible to the miner will belong, for the most part, to rocks older than those bearing lead. The tin veins will be of higher relative antiquity for the same reason that the "underlying" igneous formations or granites which are visible to man are older, on the whole, than the overlying or trappean formations.

If different sets of fissures, originating simultaneously at different levels in the earth's crust, and communicating, some of them with volcanic, others with heated Plutonic ma.s.ses, be filled with different metals, it will follow that those formed farthest from the surface will usually require the longest time before they can be exposed superficially. In order to bring them into view, or within reach of the miner, a greater amount of upheaval and denudation must take place in proportion as they have lain deeper when first formed and filled. A considerable series of geological revolutions must intervene before any part of the fissure which has been for ages in the proximity of the Plutonic rock, so as to receive the gases discharged from it when it was cooling, can emerge into the atmosphere. But I need not enlarge on this subject, as the reader will remember what was said in the 30th, 32d, and 35th chapters on the chronology of the volcanic and hypogene formations.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Student's Elements of Geology Part 76 summary

You're reading The Student's Elements of Geology. This manga has been translated by Updating. Author(s): Charles Lyell. Already has 1036 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com