BestLightNovel.com

A System of Logic: Ratiocinative and Inductive Volume I Part 29

A System of Logic: Ratiocinative and Inductive - BestLightNovel.com

You’re reading novel A System of Logic: Ratiocinative and Inductive Volume I Part 29 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

1. The deductive operation by which we derive the law of an effect from the laws of the causes, the concurrence of which gives rise to it, may be undertaken either for the purpose of discovering the law, or of explaining a law already discovered. The word _explanation_ occurs so continually and holds so important a place in philosophy, that a little time spent in fixing the meaning of it will be profitably employed.

An individual fact is said to be explained, by pointing out its cause, that is, by stating the law or laws of causation, of which its production is an instance. Thus, a conflagration is explained, when it is proved to have arisen from a spark falling into the midst of a heap of combustibles. And in a similar manner, a law or uniformity in nature is said to be explained, when another law or laws are pointed out, of which that law itself is but a case, and from which it could be deduced.

2. There are three distinguishable sets of circ.u.mstances in which a law of causation may be explained from, or, as it also is often expressed, resolved into, other laws.

The first is the case already so fully considered; an intermixture of laws, producing a joint effect equal to the sum of the effects of the causes taken separately. The law of the complex effect is explained, by being resolved into the separate laws of the causes which contribute to it. Thus, the law of the motion of a planet is resolved into the law of the acquired force, which tends to produce an uniform motion in the tangent, and the law of the centripetal force which tends to produce an accelerating motion towards the sun; the real motion being a compound of the two.

It is necessary here to remark, that in this resolution of the law of a complex effect, the laws of which it is compounded are not the only elements. It is resolved into the laws of the separate causes, together with the fact of their coexistence. The one is as essential an ingredient as the other; whether the object be to discover the law of the effect, or only to explain it. To deduce the laws of the heavenly motions, we require not only to know the law of a rectilineal and that of a gravitative force, but the existence of both these forces in the celestial regions, and even their relative amount. The complex laws of causation are thus resolved into two distinct kinds of elements: the one, simpler laws of causation, the other (in the aptly selected expression of Dr. Chalmers) collocations; the collocations consisting in the existence of certain agents or powers, in certain circ.u.mstances of place and time. We shall hereafter have occasion to return to this distinction, and to dwell on it at such length as dispenses with the necessity of further insisting on it here. The first mode, then, of the explanation of Laws of Causation, is when the law of an effect is resolved into the various tendencies of which it is the result, together with the laws of those tendencies.

3. A second case is when, between what seemed the cause and what was supposed to be its effect, further observation detects an intermediate link; a fact caused by the antecedent, and in its turn causing the consequent; so that the cause at first a.s.signed is but the remote cause, operating through the intermediate phenomenon. A seemed the cause of C, but it subsequently appeared that A was only the cause of B, and that it is B which was the cause of C. For example: mankind were aware that the act of touching an outward object caused a sensation. It was subsequently discovered, that after we have touched the object, and before we experience the sensation, some change takes place in a kind of thread called a nerve, which extends from our outward organs to the brain. Touching the object, therefore, is only the remote cause of our sensation; that is, not the cause, properly speaking, but the cause of the cause;--the real cause of the sensation is the change in the state of the nerve. Future experience may not only give us more knowledge than we now have of the particular nature of this change, but may also interpolate another link: between the contact (for example) of the object with our outward organs, and the production of the change of state in the nerve, there may take place some electric phenomenon; or some phenomenon of a nature not resembling the effects of any known agency. Hitherto, however, no such intermediate link has been discovered; and the touch of the object must be considered, provisionally, as the proximate cause of the affection of the nerve. The sequence, therefore, of a sensation of touch on contact with an object, is ascertained not to be an ultimate law; it is resolved, as the phrase is, into two other laws,--the law, that contact with an object produces an affection of the nerve; and the law, that an affection of the nerve produces sensation.

To take another example: the more powerful acids corrode or blacken organic compounds. This is a case of causation, but of remote causation; and is said to be explained when it is shown that there is an intermediate link, namely, the separation of some of the chemical elements of the organic structure from the rest, and their entering into combination with the acid. The acid causes this separation of the elements, and the separation of the elements causes the disorganization, and often the charring of the structure. So, again, chlorine extracts colouring matters, (whence its efficacy in bleaching,) and purifies the air from infection. This law is resolved into the two following laws.

Chlorine has a powerful affinity for bases of all kinds, particularly metallic bases and hydrogen. Such bases are essential elements of colouring matters and contagious compounds: which substances, therefore, are decomposed and destroyed by chlorine.

4. It is of importance to remark, that when a sequence of phenomena is thus resolved into other laws, they are always laws more general than itself. The law that A is followed by C, is less general than either of the laws which connect B with C and A with B. This will appear from very simple considerations.

All laws of causation are liable to be counteracted or frustrated, by the non-fulfilment of some negative condition: the tendency, therefore, of B to produce C may be defeated. Now the law that A produces B, is equally fulfilled whether B is followed by C or not; but the law that A produces C by means of B, is of course only fulfilled when B is really followed by C, and is therefore less general than the law that A produces B. It is also less general than the law that B produces C. For B may have other causes besides A; and as A produces C only by means of B, while B produces C whether it has itself been produced by A or by anything else, the second law embraces a greater number of instances, covers as it were a greater s.p.a.ce of ground, than the first.

Thus, in our former example, the law that the contact of an object causes a change in the state of the nerve, is more general than the law that contact with an object causes sensation, since, for aught we know, the change in the nerve may equally take place when, from a counteracting cause, as for instance, strong mental excitement, the sensation does not follow; as in a battle, where wounds are sometimes received without any consciousness of receiving them. And again, the law that change in the state of a nerve produces sensation, is more general than the law that contact with an object produces sensation; since the sensation equally follows the change in the nerve when not produced by contact with an object, but by some other cause; as in the well-known case, when a person who has lost a limb, feels the same sensation which he has been accustomed to call a pain in the limb.

Not only are the laws of more immediate sequence into which the law of a remote sequence is resolved, laws of greater generality than that law is, but (as a consequence of, or rather as implied in, their greater generality) they are more to be relied on; there are fewer chances of their being ultimately found not to be universally true. From the moment when the sequence of A and C is shown not to be immediate, but to depend on an intervening phenomenon, then, however constant and invariable the sequence of A and C has. .h.i.therto been found, possibilities arise of its failure, exceeding those which can affect either of the more immediate sequences, A, B, and B, C. The tendency of A to produce C may be defeated by whatever is capable of defeating either the tendency of A to produce B, or the tendency of B to produce C; it is therefore twice as liable to failure as either of those more elementary tendencies; and the generalization that A is always followed by C, is twice as likely to be found erroneous. And so of the converse generalization, that C is always preceded and caused by A; which will be erroneous not only if there should happen to be a second immediate mode of production of C itself, but moreover if there be a second mode of production of B, the immediate antecedent of C in the sequence.

The resolution of the one generalization into the other two, not only shows that there are possible limitations of the former, from which its two elements are exempt, but shows also where these are to be looked for. As soon as we know that B intervenes between A and C, we also know that if there be cases in which the sequence of A and C does not hold, these are most likely to be found by studying the effects or the conditions of the phenomenon B.

It appears, then, that in the second of the three modes in which a law may be resolved into other laws, the latter are more general, that is, extend to more cases, and are also less likely to require limitation from subsequent experience, than the law which they serve to explain.

They are more nearly unconditional; they are defeated by fewer contingencies; they are a nearer approach to the universal truth of nature. The same observations are still more evidently true with regard to the first of the three modes of resolution. When the law of an effect of combined causes is resolved into the separate laws of the causes, the nature of the case implies that the law of the effect is less general than the law of any of the causes, since it only holds when they are combined; while the law of any one of the causes holds good both then, and also when that cause acts apart from the rest. It is also manifest that the complex law is liable to be oftener unfulfilled than any one of the simpler laws of which it is the result, since every contingency which defeats any of the laws prevents so much of the effect as depends on it, and thereby defeats the complex law. The mere rusting, for example, of some small part of a great machine, often suffices entirely to prevent the effect which ought to result from the joint action of all the parts. The law of the effect of a combination of causes is always subject to the whole of the negative conditions which attach to the action of all the causes severally.

There is another and an equally strong reason why the law of a complex effect must be less general than the laws of the causes which conspire to produce it. The same causes, acting according to the same laws, and differing only in the proportions in which they are combined, often produce effects which differ not merely in quant.i.ty, but in kind. The combination of a centripetal with a projectile force, in the proportions which obtain in all the planets and satellites of our solar system, gives rise to an elliptical motion; but if the ratio of the two forces to each other were slightly altered, it is demonstrated that the motion produced would be in a circle, or a parabola, or an hyperbola: and it is thought that in the case of some comets one of these is probably the fact. Yet the law of the parabolic motion would be resolvable into the very same simple laws into which that of the elliptical motion is resolved, namely, the law of the permanence of rectilineal motion, and the law of gravitation. If, therefore, in the course of ages, some circ.u.mstance were to manifest itself which, without defeating the law of either of those forces, should merely alter their proportion to one another, (such as the shock of some solid body, or even the acc.u.mulating effect of the resistance of the medium in which astronomers have been led to surmise that the motions of the heavenly bodies take place,) the elliptical motion might be changed into a motion in some other conic section; and the complex law, that the planetary motions take place in ellipses, would be deprived of its universality, though the discovery would not at all detract from the universality of the simpler laws into which that complex law is resolved. The law, in short, of each of the concurrent causes remains the same, however their collocations may vary; but the law of their joint effect varies with every difference in the collocations. There needs no more to show how much more general the elementary laws must be, than any of the complex laws which are derived from them.

5. Besides the two modes which have been treated of, there is a third mode in which laws are resolved into one another; and in this it is self-evident that they are resolved into laws more general than themselves. This third mode is the _subsumption_ (as it has been called) of one law under another: or (what comes to the same thing) the gathering up of several laws into one more general law which includes them all. The most splendid example of this operation was when terrestrial gravity and the central force of the solar system were brought together under the general law of gravitation. It had been proved antecedently that the earth and the other planets tend to the sun; and it had been known from the earliest times that terrestrial bodies tend towards the earth. These were similar phenomena; and to enable them both to be subsumed under one law, it was only necessary to prove that, as the effects were similar in quality, so also they, as to quant.i.ty, conform to the same rules. This was first shown to be true of the moon, which agreed with terrestrial objects not only in tending to a centre, but in the fact that this centre was the earth. The tendency of the moon towards the earth being ascertained to vary as the inverse square of the distance, it was deduced from this, by direct calculation, that if the moon were as near to the earth as terrestrial objects are, and the acquired force in the direction of the tangent were suspended, the moon would fall towards the earth through exactly as many feet in a second as those objects do by virtue of their weight. Hence the inference was irresistible, that the moon also tends to the earth by virtue of its weight: and that the two phenomena, the tendency of the moon to the earth and the tendency of terrestrial objects to the earth, being not only similar in quality, but, when in the same circ.u.mstances, identical in quant.i.ty, are cases of one and the same law of causation.

But the tendency of the moon to the earth, and the tendency of the earth and planets to the sun, were already known to be cases of the same law of causation: and thus the law of all these tendencies, and the law of terrestrial gravity, were recognised as identical, and were subsumed under one general law, that of gravitation.

In a similar manner, the laws of magnetic phenomena have more recently been subsumed under known laws of electricity. It is thus that the most general laws of nature are usually arrived at: we mount to them by successive steps. For, to arrive by correct induction at laws which hold under such an immense variety of circ.u.mstances, laws so general as to be independent of any varieties of s.p.a.ce or time which we are able to observe, requires for the most part many distinct sets of experiments or observations, conducted at different times and by different people. One part of the law is first ascertained, afterwards another part: one set of observations teaches us that the law holds good under some conditions, another that it holds good under other conditions, by combining which observations we find that it holds good under conditions much more general, or even universally. The general law, in this case, is literally the sum of all the partial ones; it is the recognition of the same sequence in different sets of instances; and may, in fact, be regarded as merely one step in the process of elimination. That tendency of bodies towards one another, which we now call gravity, had at first been observed only on the earth's surface, where it manifested itself only as a tendency of all bodies towards the earth, and might, therefore, be ascribed to a peculiar property of the earth itself: one of the circ.u.mstances, namely, the proximity of the earth, had not been eliminated. To eliminate this circ.u.mstance required a fresh set of instances in other parts of the universe: these we could not ourselves create; and though nature had created them for us, we were placed in very unfavourable circ.u.mstances for observing them. To make these observations, fell naturally to the lot of a different set of persons from those who studied terrestrial phenomena; and had, indeed, been a matter of great interest at a time when the idea of explaining celestial facts by terrestrial laws was looked upon as the confounding of an indefeasible distinction. When, however, the celestial motions were accurately ascertained, and the deductive processes performed, from which it appeared that their laws and those of terrestrial gravity corresponded, those celestial observations became a set of instances which exactly eliminated the circ.u.mstance of proximity to the earth; and proved that in the original case, that of terrestrial objects, it was not the earth, as such, that caused the motion or the pressure, but the circ.u.mstance common to that case with the celestial instances, namely, the presence of some great body within certain limits of distance.

6. There are, then, three modes of explaining laws of causation, or, which is the same thing, resolving them into other laws. First, when the law of an effect of combined causes is resolved into the separate laws of the causes, together with the fact of their combination. Secondly, when the law which connects any two links, not proximate, in a chain of causation, is resolved into the laws which connect each with the intermediate links. Both of these are cases of resolving one law into two or more; in the third, two or more are resolved into one: when, after the law has been shown to hold good in several different cla.s.ses of cases, we decide that what is true in each of these cla.s.ses of cases, is true under some more general supposition, consisting of what all those cla.s.ses of cases have in common. We may here remark that this last operation involves none of the uncertainties attendant on induction by the Method of Agreement, since we need not suppose the result to be extended by way of inference to any new cla.s.s of cases, different from those by the comparison of which it was engendered.

In all these three processes, laws are, as we have seen, resolved into laws more general than themselves; laws extending to all the cases which the former extended to, and others besides. In the first two modes they are also resolved into laws more certain, in other words, more universally true than themselves; they are, in fact, proved not to be themselves laws of nature, the character of which is to be universally true, but _results_ of laws of nature, which may be only true conditionally, and for the most part. No difference of this sort exists in the third case; since here the partial laws are, in fact, the very same law as the general one, and any exception to them would be an exception to it too.

By all the three processes, the range of deductive science is extended; since the laws, thus resolved, may be thenceforth deduced demonstratively from the laws into which they are resolved. As already remarked, the same deductive process which proves a law or fact of causation if unknown, serves to explain it when known.

The word explanation is here used in its philosophical sense. What is called explaining one law of nature by another, is but subst.i.tuting one mystery for another; and does nothing to render the general course of nature other than mysterious: we can no more a.s.sign a _why_ for the more extensive laws than for the partial ones. The explanation may subst.i.tute a mystery which has become familiar, and has grown to _seem_ not mysterious, for one which is still strange. And this is the meaning of explanation, in common parlance. But the process with which we are here concerned often does the very contrary: it resolves a phenomenon with which we are familiar, into one of which we previously knew little or nothing; as when the common fact of the fall of heavy bodies was resolved into the tendency of all particles of matter towards one another. It must be kept constantly in view, therefore, that in science, those who speak of explaining any phenomenon mean (or should mean) pointing out not some more familiar, but merely some more general, phenomenon, of which it is a partial exemplification; or some laws of causation which produce it by their joint or successive action, and from which, therefore, its conditions may be determined deductively. Every such operation brings us a step nearer towards answering the question which was stated in a previous chapter as comprehending the whole problem of the investigation of nature, viz. What are the fewest a.s.sumptions, which being granted, the order of nature as it exists would be the result? What are the fewest general propositions from which all the uniformities existing in nature could be deduced?

The laws, thus explained or resolved, are sometimes said to be _accounted for_; but the expression is incorrect, if taken to mean anything more than what has been already stated. In minds not habituated to accurate thinking, there is often a confused notion that the general laws are the _causes_ of the partial ones; that the law of general gravitation, for example, causes the phenomenon of the fall of bodies to the earth. But to a.s.sert this, would be a misuse of the word cause: terrestrial gravity is not an effect of general gravitation, but a _case_ of it; that is, one kind of the particular instances in which that general law obtains. To account for a law of nature means, and can mean, nothing more than to a.s.sign other laws more general, together with collocations, which laws and collocations being supposed, the partial law follows without any additional supposition.

CHAPTER XIII.

MISCELLANEOUS EXAMPLES OF THE EXPLANATION OF LAWS OF NATURE.

1. The most striking example which the history of science presents, of the explanation of laws of causation and other uniformities of sequence among special phenomena, by resolving them into laws of greater simplicity and generality, is the great Newtonian generalization: respecting which typical instance so much having already been said, it is sufficient to call attention to the great number and variety of the special observed uniformities which are in this case accounted for, either as particular cases or as consequences of one very simple law of universal nature. The simple fact of a tendency of every particle of matter towards every other particle, varying inversely as the square of the distance, explains the fall of bodies to the earth, the revolutions of the planets and satellites, the motions (so far as known) of comets, and all the various regularities which have been observed in these special phenomena; such as the elliptical orbits, and the variations from exact ellipses; the relation between the solar distances of the planets and the duration of their revolutions; the precession of the equinoxes; the tides, and a vast number of minor astronomical truths.

Mention has also been made in the preceding chapter of the explanation of the phenomena of magnetism from laws of electricity; the special laws of magnetic agency having been affiliated by deduction to observed laws of electric action, in which they have ever since been considered to be included as special cases. An example not so complete in itself, but even more fertile in consequences, having been the starting point of the really scientific study of physiology, is the affiliation, commenced by b.i.+.c.hat, and carried on by subsequent biologists, of the properties of the bodily organs, to the elementary properties of the tissues into which they are anatomically decomposed.

Another striking instance is afforded by Dalton's generalization, commonly known as the atomic theory. It had been known from the very commencement of accurate chemical observation, that any two bodies combine chemically with one another in only a certain number of proportions; but those proportions were in each case expressed by a percentage--so many parts (by weight) of each ingredient, in 100 of the compound; (say 35 and a fraction of one element, 64 and a fraction of the other): in which mode of statement no relation was perceived between the proportion in which a given element combines with one substance, and that in which it combines with others. The great step made by Dalton consisted in perceiving, that a unit of weight might be established for each substance, such that by supposing the substance to enter into all its combinations in the ratio either of that unit, or of some low multiple of that unit, all the different proportions, previously expressed by percentages, were found to result. Thus 1 being a.s.sumed as the unit of hydrogen, if 8 were then taken as that of oxygen, the combination of one unit of hydrogen with one unit of oxygen would produce the exact proportion of weight between the two substances which is known to exist in water; the combination of one unit of hydrogen with two units of oxygen would produce the proportion which exists in the other compound of the same two elements, called peroxide of hydrogen; and the combinations of hydrogen and of oxygen with all other substances, would correspond with the supposition that those elements enter into combination by single units, or twos, or threes, of the numbers a.s.signed to them, 1 and 8, and the other substances by ones or twos or threes of other determinate numbers proper to each. The result is that a table of the equivalent numbers, or, as they are called, atomic weights, of all the elementary substances, comprises in itself, and scientifically explains, all the proportions in which any substance, elementary or compound, is found capable of entering into chemical combination with any other substance whatever.

2. Some interesting cases of the explanation of old uniformities by newly ascertained laws are afforded by the researches of Professor Graham. That eminent chemist was the first who drew attention to the distinction which may be made of all substances into two cla.s.ses, termed by him crystalloids and colloids; or rather, of all states of matter into the crystalloid and the colloidal states, for many substances are capable of existing in either. When in the colloidal state, their sensible properties are very different from those of the same substance when crystallized, or when in a state easily susceptible of crystallization. Colloid substances pa.s.s with extreme difficulty and slowness into the crystalline state, and are extremely inert in all the ordinary chemical relations. Substances in the colloid state are almost always, when combined with water, more or less viscous or gelatinous.

The most prominent examples of the state are certain animal and vegetable substances, particularly gelatine, alb.u.men, starch, the gums, caramel, tannin, and some others. Among substances not of organic origin, the most notable instances are hydrated silicic acid, and hydrated alumina, with other metallic peroxides of the aluminous cla.s.s.

Now it is found, that while colloidal substances are easily penetrated by water, and by the solutions of crystalloid substances, they are very little penetrable by one another: which enabled Professor Graham to introduce a highly effective process (termed dialysis) for separating the crystalloid substances contained in any liquid mixture, by pa.s.sing them through a thin septum of colloidal matter, which does not suffer anything colloidal to pa.s.s, or suffers it only in very minute quant.i.ty.

This property of colloids enabled Mr. Graham to account for a number of special results of observation, not previously explained.

For instance, "while soluble crystalloids are always highly sapid, soluble colloids are singularly insipid," as might be expected; for, as the sentient extremities of the nerves of the palate "are probably protected by a colloidal membrane," impermeable to other colloids, a colloid, when tasted, probably never reaches those nerves. Again, "it has been observed that vegetable gum is not digested in the stomach; the coats of that organ dialyse the soluble food, absorbing crystalloids, and rejecting all colloids." One of the mysterious processes accompanying digestion, the secretion of free muriatic acid by the coats of the stomach, obtains a probable hypothetical explanation through the same law. Finally, much light is thrown upon the observed phenomena of osmose (the pa.s.sage of fluids outward and inward through animal membranes) by the fact that the membranes are colloidal. In consequence, the water and saline solutions contained in the animal body pa.s.s easily and rapidly through the membranes, while the substances directly applicable to nutrition, which are mostly colloidal, are detained by them.[47]

The property which salt possesses of preserving animal substances from putrefaction is resolved by Liebig into two more general laws, the strong attraction of salt for water, and the necessity of the presence of water as a condition of putrefaction. The intermediate phenomenon which is interpolated between the remote cause and the effect, can here be not merely inferred but seen; for it is a familiar fact, that flesh upon which salt has been thrown is speedily found swimming in brine.

The second of the two factors (as they may be termed) into which the preceding law has been resolved, the necessity of water to putrefaction, itself affords an additional example of the Resolution of Laws. The law itself is proved by the Method of Difference, since flesh completely dried and kept in a dry atmosphere does not putrefy; as we see in the case of dried provisions, and human bodies in very dry climates. A deductive explanation of this same law results from Liebig's speculations. The putrefaction of animal and other azotised bodies is a chemical process, by which they are gradually dissipated in a gaseous form, chiefly in that of carbonic acid and ammonia; now to convert the carbon of the animal substance into carbonic acid requires oxygen, and to convert the azote into ammonia requires hydrogen, which are the elements of water. The extreme rapidity of the putrefaction of azotised substances, compared with the gradual decay of non-azotised bodies (such as wood and the like) by the action of oxygen alone, he explains from the general law that substances are much more easily decomposed by the action of two different affinities upon two of their elements, than by the action of only one.

3. Among the many important properties of the nervous system, which have either been first discovered or strikingly ill.u.s.trated by Dr.

Brown-Squard, I select the reflex influence of the nervous system on nutrition and secretion. By reflex nervous action is meant, action which one part of the nervous system exerts over another part, without any intermediate action on the brain, and consequently without consciousness; or which, if it does pa.s.s through the brain, at least produces its effects independently of the will. There are many experiments which prove that irritation of a nerve in one part of the body may in this manner excite powerful action in another part; for example, food injected into the stomach through a divided sophagus, nevertheless produces secretion of saliva; warm water injected into the bowels, and various other irritations of the lower intestines, have been found to excite secretion of the gastric juice, and so forth. The reality of the power being thus proved, its agency explains a great variety of apparently anomalous phenomena; of which I select the following from Dr. Brown-Squard's _Lectures on the Nervous System_.

The production of tears by irritation of the eye, or of the mucous membrane of the nose:

The secretions of the eye and nose increased by exposure of other parts of the body to cold:

Inflammation of the eye, especially when of traumatic origin, very frequently excites a similar affection in the other eye, which may be cured by section of the intervening nerve:

Loss of sight sometimes produced by neuralgia; and has been known to be at once cured by the extirpation (for instance) of a carious tooth:

Even cataract has been produced in a healthy eye by cataract in the other eye, or by neuralgia, or by a wound of the frontal nerve:

The well-known phenomenon of a sudden stoppage of the heart's action, and consequent death, produced by irritation of some of the nervous extremities: _e.g._, by drinking very cold water; or by a blow on the abdomen, or other sudden excitation of the abdominal sympathetic nerve; though this nerve may be irritated to any extent without stopping the heart's action, if a section be made of the communicating nerves:

The extraordinary effects produced on the internal organs by an extensive burn on the surface of the body; consisting in violent inflammation of the tissues of the abdomen, chest, or head: which, when death ensues from this kind of injury, is one of the most frequent causes of it:

Paralysis and ansthesia of one part of the body from neuralgia in another part; and muscular atrophy from neuralgia, even when there is no paralysis:

Teta.n.u.s produced by the lesion of a nerve; Dr. Brown-Squard thinks it highly probable that hydrophobia is a phenomenon of a similar nature:

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

A System of Logic: Ratiocinative and Inductive Volume I Part 29 summary

You're reading A System of Logic: Ratiocinative and Inductive. This manga has been translated by Updating. Author(s): John Stuart Mill. Already has 500 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com