BestLightNovel.com

Volcanic Islands Part 3

Volcanic Islands - BestLightNovel.com

You’re reading novel Volcanic Islands Part 3 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

(FIGURE 3: FRAGMENT OF A SPHERICAL VOLCANIC BOMB, with the interior parts coa.r.s.ely cellular, coated by a concentric layer of compact lava, and this again by a crust of finely cellular rock.

FIGURE 4: VOLCANIC BOMB OF OBSIDIAN FROM AUSTRALIA. The upper figure gives a front view; the lower a side view of the same object.)

These occur in great numbers strewed on the ground, and some of them lie at considerable distances from any points of eruption. They vary in size from that of an apple to that of a man's body; they are either spherical or pear-shaped, or with the hinder part (corresponding to the tail of a comet) irregular, studded with projecting points, and even concave. Their surfaces are rough, and fissured with branching cracks; their internal structure is either irregularly scoriaceous and compact, or it presents a symmetrical and very curious appearance. An irregular segment of a bomb of this latter kind, of which I found several, is accurately represented in Figure 3. Its size was about that of a man's head. The whole interior is coa.r.s.ely cellular; the cells averaging in diameter about the tenth of an inch; but nearer the outside they gradually decrease in size. This part is succeeded by a well-defined sh.e.l.l of compact lava, having a nearly uniform thickness of about the third of an inch; and the sh.e.l.l is overlaid by a somewhat thicker coating of finely cellular lava (the cells varying from the fiftieth to the hundredth of an inch in diameter), which forms the external surface: the line separating the sh.e.l.l of compact lava from the outer scoriaceous crust is distinctly defined. This structure is very simply explained, if we suppose a ma.s.s of viscid, scoriaceous matter, to be projected with a rapid, rotatory motion through the air; for whilst the external crust, from cooling, became solidified (in the state we now see it), the centrifugal force, by relieving the pressure in the interior parts of the bomb, would allow the heated vapours to expand their cells; but these being driven by the same force against the already-hardened crust, would become, the nearer they were to this part, smaller and smaller or less expanded, until they became packed into a solid, concentric sh.e.l.l. As we know that chips from a grindstone (Nichol "Architecture of the Heavens.") can be flirted off, when made to revolve with sufficient velocity, we need not doubt that the centrifugal force would have power to modify the structure of a softened bomb, in the manner here supposed.

Geologists have remarked, that the external form of a bomb at once bespeaks the history of its aerial course, and few now see that the internal structure can speak, with almost equal plainness, of its rotatory movement.

M. Bory St. Vincent ("Voyage aux Quatre Isles d'Afrique" tome 1 page 222.) has described some b.a.l.l.s of lava from the Isle of Bourbon, which have a closely similar structure. His explanation, however (if I understand it rightly), is very different from that which I have given; for he supposes that they have rolled, like s...o...b..a.l.l.s, down the sides of the crater. M.

Beudant ("Voyage en Hongrie" tome 2 page 214.), also, has described some singular little b.a.l.l.s of obsidian, never more than six or eight inches in diameter, which he found strewed on the surface of the ground: their form is always oval; sometimes they are much swollen in the middle, and even spindle-shaped: their surface is regularly marked with concentric ridges and furrows, all of which on the same ball are at right angles to one axis: their interior is compact and gla.s.sy. M. Beudant supposes that ma.s.ses of lava, when soft, were shot into the air, with a rotatory movement round the same axis, and that the form and superficial ridges of the bombs were thus produced. Sir Thomas Mitch.e.l.l has given me what at first appears to be the half of a much flattened oval ball of obsidian; it has a singular artificial-like appearance, which is well represented (of the natural size) in Figure 4. It was found in its present state, on a great sandy plain between the rivers Darling and Murray, in Australia, and at the distance of several hundred miles from any known volcanic region. It seems to have been embedded in some reddish tufaceous matter; and may have been transported either by the aborigines or by natural means. The external saucer consists of compact obsidian, of a bottle-green colour, and is filled with finely cellular black lava, much less transparent and gla.s.sy than the obsidian.

The external surface is marked with four or five not quite perfect ridges, which are represented rather too distinctly in Figure 4. Here, then, we have the external structure described by M. Beudant, and the internal cellular condition of the bombs from Ascension. The lip of the saucer is slightly concave, exactly like the margin of a soup-plate, and its inner edge overlaps a little the central cellular lava. This structure is so symmetrical round the entire circ.u.mference, that one is forced to suppose that the bomb burst during its rotatory course, before being quite solidified, and that the lip and edges were thus slightly modified and turned inwards. It may be remarked that the superficial ridges are in planes, at right angles to an axis, transverse to the longer axis of the flattened oval: to explain this circ.u.mstance, we may suppose that when the bomb burst, the axis of rotation changed.

AERIFORM EXPLOSIONS.

The flanks of Green Mountain and the surrounding country are covered by a great ma.s.s, some hundred feet in thickness, of loose fragments. The lower beds generally consist of fine-grained, slightly consolidated tuffs (Some of this peperino, or tuff, is sufficiently hard not to be broken by the greatest force of the fingers.), and the upper beds of great loose fragments, with alternating finer beds. (On the northern side of the Green Mountain a thin seam, about an inch in thickness, of compact oxide of iron, extends over a considerable area; it lies conformably in the lower part of the stratified ma.s.s of ashes and fragments. This substance is of a reddish- brown colour, with an almost metallic l.u.s.tre; it is not magnetic, but becomes so after having been heated under the blowpipe, by which it is blackened and partly fused. This seam of compact stone, by intercepting the little rain-water which falls on the island, gives rise to a small dripping spring, first discovered by Dampier. It is the only fresh water on the island, so that the possibility of its being inhabited has entirely depended on the occurrence of this ferruginous layer.) One white ribbon- like layer of decomposed, pumiceous breccia, was curiously bent into deep unbroken curves, beneath each of the large fragments in the superinc.u.mbent stratum. From the relative position of these beds, I presume that a narrow- mouthed crater, standing nearly in the position of Green Mountain, like a great air-gun, shot forth, before its final extinction, this vast acc.u.mulation of loose matter. Subsequently to this event, considerable dislocations have taken place, and an oval circus has been formed by subsidence. This sunken s.p.a.ce lies at the north-eastern foot of Green Mountain, and is well represented in Map 2. Its longer axis, which is connected with a N.E. and S.W. line of fissure, is three-fifths of a nautical mile in length; its sides are nearly perpendicular, except in one spot, and about four hundred feet in height; they consist, in the lower part, of a pale basalt with feldspar, and in the upper part, of the tuff and loose ejected fragments; the bottom is smooth and level, and under almost any other climate a deep lake would have been formed here. From the thickness of the bed of loose fragments, with which the surrounding country is covered, the amount of aeriform matter necessary for their projection must have been enormous; hence we may suppose it probable that after the explosions vast subterranean caverns were left, and that the falling in of the roof of one of these produced the hollow here described. At the Galapagos Archipelago, pits of a similar character, but of a much smaller size, frequently occur at the bases of small cones of eruption.

EJECTED GRANITIC FRAGMENTS.

In the neighbourhood of Green Mountain, fragments of extraneous rock are not unfrequently found embedded in the midst of ma.s.ses of scoriae.

Lieutenant Evans, to whose kindness I am indebted for much information, gave me several specimens, and I found others myself. They nearly all have a granitic structure, are brittle, harsh to the touch, and apparently of altered colours.

FIRST, a white syenite, streaked and mottled with red; it consists of well- crystallised feldspar, numerous grains of quartz, and brilliant, though small, crystals of hornblende. The feldspar and hornblende in this and the succeeding cases have been determined by the reflecting goniometer, and the quartz by its action under the blowpipe. The feldspar in these ejected fragments, like the gla.s.sy kind in the trachyte, is from its cleavage a potash-feldspar.

SECONDLY, a brick-red ma.s.s of feldspar, quartz, and small dark patches of a decayed mineral; one minute particle of which I was able to ascertain, by its cleavage, to be hornblende.

THIRDLY, a ma.s.s of confusedly crystallised white feldspar, with little nests of a dark-coloured mineral, often carious, externally rounded, having a glossy fracture, but no distinct cleavage: from comparison with the second specimen, I have no doubt that it is fused hornblende.

FOURTHLY, a rock, which at first appears a simple aggregation of distinct and large-sized crystals of dusty-coloured Labrador feldspar (Professor Miller has been so kind as to examine this mineral. He obtained two good cleavages of 86 degrees 30 minutes and 86 degrees 50 minutes. The mean of several, which I made, was 86 degrees 30 minutes. Professor Miller states that these crystals, when reduced to a fine powder, are soluble in hydrochloric acid, leaving some undissolved silex behind; the addition of oxalate of ammonia gives a copious precipitate of lime. He further remarks, that according to Von Kobell, anorthite (a mineral occurring in the ejected fragments at Mount Somma) is always white and transparent, so that if this be the case, these crystals from Ascension must be considered as Labrador feldspar. Professor Miller adds, that he has seen an account, in Erdmann's "Journal fur tecnische Chemie," of a mineral ejected from a volcano which had the external characters of Labrador feldspar, but differed in the a.n.a.lysis from that given by mineralogists of this mineral: the author attributed this difference to an error in the a.n.a.lysis of Labrador feldspar, which is very old.); but in their interstices there is some white granular feldspar, abundant scales of mica, a little altered hornblende, and, as I believe, no quartz. I have described these fragments in detail, because it is rare to find granitic rocks ejected from volcanoes with their MINERALS UNCHANGED, as is the case with the first specimen, and partially with the second. (Daubeny, in his work on Volcanoes page 386, remarks that this is the case; and Humboldt, in his "Personal Narrative" volume 1 page 236, says "In general, the ma.s.ses of known primitive rocks, I mean those which perfectly resemble our granites, gneiss, and mica-slate, are very rare in lavas: the substances we generally denote by the name of granite, thrown out by Vesuvius, are mixtures of nepheline, mica, and pyroxene.") One other large fragment, found in another spot, is deserving of notice; it is a conglomerate, containing small fragments of granitic, cellular, and jaspery rocks, and of hornstone porphyries, embedded in a base of wacke, threaded by numerous thin layers of a concretionary pitchstone pa.s.sing into obsidian. These layers are parallel, slightly tortuous, and short; they thin out at their ends, and resemble in form the layers of quartz in gneiss. It is probable that these small embedded fragments were not separately ejected, but were entangled in a fluid volcanic rock, allied to obsidian; and we shall presently see that several varieties of this latter series of rock a.s.sume a laminated structure.

TRACHYTIC SERIES OF ROCKS.

Those occupy the more elevated and central, and likewise the south-eastern, parts of the island. The trachyte is generally of a pale brown colour, stained with small darker patches; it contains broken and bent crystals of gla.s.sy feldspar, grains of specular iron, and black microscopical points, which latter, from being easily fused, and then becoming magnetic, I presume are hornblende. The greater number of the hills, however, are composed of a quite white, friable stone, appearing like a trachytic tuff.

Obsidian, hornstone, and several kinds of laminated feldspathic rocks, are a.s.sociated with the trachyte. There is no distinct stratification; nor could I distinguish a crateriform structure in any of the hills of this series. Considerable dislocations have taken place; and many fissures in these rocks are yet left open, or are only partially filled with loose fragments. Within the s.p.a.ce (This s.p.a.ce is nearly included by a line sweeping round Green Mountain, and joining the hills, called the Weather Port Signal, Holyhead, and that denominated (improperly in a geological sense) "the Crater of an old volcano."), mainly formed of trachyte, some basaltic streams have burst forth; and not far from the summit of Green Mountain, there is one stream of quite black, vesicular basalt, containing minute crystals of gla.s.sy feldspar, which have a rounded appearance.

The soft white stone above mentioned is remarkable from its singular resemblance, when viewed in ma.s.s, to a sedimentary tuff: it was long before I could persuade myself that such was not its origin; and other geologists have been perplexed by closely similar formations in trachytic regions. In two cases, this white earthy stone formed isolated hills; in a third, it was a.s.sociated with columnar and laminated trachyte; but I was unable to trace an actual junction. It contains numerous crystals of gla.s.sy feldspar and black microscopical specks, and is marked with small darker patches, exactly as in the surrounding trachyte. Its basis, however, when viewed under the microscope, is generally quite earthy; but sometimes it exhibits a decidedly crystalline structure. On the hill marked "Crater of an old volcano," it pa.s.ses into a pale greenish-grey variety, differing only in its colour, and in not being so earthy; the pa.s.sage was in one case effected insensibly; in another, it was formed by numerous, rounded and angular, ma.s.ses of the greenish variety, being embedded in the white variety;--in this latter case, the appearance was very much like that of a sedimentary deposit, torn up and abraded during the deposition of a subsequent stratum. Both these varieties are traversed by innumerable tortuous veins (presently to be described), which are totally unlike injected dikes, or indeed any other veins which I have ever seen. Both varieties include a few scattered fragments, large and small, of dark- coloured scoriaceous rocks, the cells of some of which are partially filled with the white earthy stone; they likewise include some huge blocks of a cellular porphyry. (The porphyry is dark coloured; it contains numerous, often fractured, crystals of white opaque feldspar, also decomposing crystals of oxide of iron; its vesicles include ma.s.ses of delicate, hair- like, crystals, apparently of a.n.a.lcime.) These fragments project from the weathered surface, and perfectly resemble fragments embedded in a true sedimentary tuff. But as it is known that extraneous fragments of cellular rock are sometimes included in columnar trachyte, in phonolite (D'Aubuisson "Traite de Geognosie" tome 2 page 548.), and in other compact lavas, this circ.u.mstance is not any real argument for the sedimentary origin of the white earthy stone. (Dr. Daubeny on Volcanoes, page 180 seems to have been led to believe that certain trachytic formations of Ischia and of the Puy de Dome, which closely resemble these of Ascension, were of sedimentary origin, chiefly from the frequent presence in them "of scoriform portions, different in colour from the matrix." Dr. Daubeny adds, that on the other hand, Brocchi, and other eminent geologists, have considered these beds as earthy varieties of trachyte; he considers the subject deserving of further attention.) The insensible pa.s.sage of the greenish variety into the white one, and likewise the more abrupt pa.s.sage by fragments of the former being embedded in the latter, might result from slight differences in the composition of the same ma.s.s of molten stone, and from the abrading action of one such part still fluid on another part already solidified. The curiously formed veins have, I believe, been formed by siliceous matter being subsequently segregated. But my chief reason for believing that these soft earthy stones, with their extraneous fragments, are not of sedimentary origin, is the extreme improbability of crystals of feldspar, black microscopical specks, and small stains of a darker colour occurring in the same proportional numbers in an aqueous deposit, and in ma.s.ses of solid trachyte. Moreover, as I have remarked, the microscope occasionally reveals a crystalline structure in the apparently earthy basis. On the other hand, the partial decomposition of such great ma.s.ses of trachyte, forming whole mountains, is undoubtedly a circ.u.mstance of not easy explanation.

VEINS IN THE EARTHY TRACHYTIC Ma.s.sES.

These veins are extraordinarily numerous, intersecting in the most complicated manner both coloured varieties of the earthy trachyte: they are best seen on the flanks of the "Crater of the old volcano." They contain crystals of gla.s.sy feldspar, black microscopical specks and little dark stains, precisely as in the surrounding rock; but the basis is very different, being exceedingly hard, compact, somewhat brittle, and of rather less easy fusibility. The veins vary much, and suddenly, from the tenth of an inch to one inch in thickness; they often thin out, not only on their edges, but in their central parts, thus leaving round, irregular apertures; their surfaces are rugged. They are inclined at every possible angle with the horizon, or are horizontal; they are generally curvilinear, and often interbranch one with another. From their hardness they withstand weathering, and projecting two or three feet above the ground, they occasionally extend some yards in length; these plate-like veins, when struck, emit a sound, almost like that of a drum, and they may be distinctly seen to vibrate; their fragments, which are strewed on the ground, clatter like pieces of iron when knocked against each other. They often a.s.sume the most singular forms; I saw a pedestal of the earthy trachyte, covered by a hemispherical portion of a vein, like a great umbrella, sufficiently large to shelter two persons. I have never met with, or seen described, any veins like these; but in form they resemble the ferruginous seams, due to some process of segregation, occurring not uncommonly in sandstones,--for instance, in the New Red sandstone of England. Numerous veins of jasper and of siliceous sinter, occurring on the summit of this same hill, show that there has been some abundant source of silica, and as these plate-like veins differ from the trachyte only in their greater hardness, brittleness, and less easy fusibility, it appears probable that their origin is due to the segregation or infiltration of siliceous matter, in the same manner as happens with the oxides of iron in many sedimentary rocks.

SILICEOUS SINTER AND JASPER.

The siliceous sinter is either quite white, of little specific gravity, and with a somewhat pearly fracture, pa.s.sing into pinkish pearl quartz; or it is yellowish white, with a harsh fracture, and it then contains an earthy powder in small cavities. Both varieties occur, either in large irregular ma.s.ses in the altered trachyte, or in seams included in broad, vertical, tortuous, irregular veins of a compact, harsh stone of a dull red colour, appearing like a sandstone. This stone, however, is only altered trachyte; and a nearly similar variety, but often honeycombed, sometimes adheres to the projecting plate-like veins, described in the last paragraph. The jasper is of an ochre yellow or red colour; it occurs in large irregular ma.s.ses, and sometimes in veins, both in the altered trachyte and in an a.s.sociated ma.s.s of scoriaceous basalt. The cells of the scoriaceous basalt are lined or filled with fine, concentric layers of chalcedony, coated and studded with bright-red oxide of iron. In this rock, especially in the rather more compact parts, irregular angular patches of the red jasper are included, the edges of which insensibly blend into the surrounding ma.s.s; other patches occur having an intermediate character between perfect jasper and the ferruginous, decomposed, basaltic base. In these patches, and likewise in the large vein-like ma.s.ses of jasper, there occur little rounded cavities, of exactly the same size and form with the air-cells, which in the scoriaceous basalt are filled and lined with layers of chalcedony. Small fragments of the jasper, examined under the microscope, seem to resemble the chalcedony with its colouring matter not separated into layers, but mingled in the siliceous paste, together with some impurities. I can understand these facts,--namely, the blending of the jasper into the semi-decomposed basalt,--its occurrence in angular patches, which clearly do not occupy pre-existing hollows in the rock,--and its containing little vesicles filled with chalcedony, like those in the scoriaceous lava,--only on the supposition that a fluid, probably the same fluid which deposited the chalcedony in the air-cells, removed in those parts where there were no cavities, the ingredients of the basaltic rock, and left in their place silica and iron, and thus produced the jasper. In some specimens of silicified wood, I have observed, that in the same manner as in the basalt, the solid parts were converted into a dark-coloured h.o.m.ogeneous stone, whereas the cavities formed by the larger sap-vessels (which may be compared with the air-vesicles in the basaltic lava) and other irregular hollows, apparently produced by decay, were filled with concentric layers of chalcedony; in this case, there can be little doubt that the same fluid deposited the h.o.m.ogeneous base and the chalcedonic layers. After these considerations, I cannot doubt but that the jasper of Ascension may be viewed as a volcanic rock silicified, in precisely the same sense as this term is applied to wood, when silicified; we are equally ignorant of the means by which every atom of wood, whilst in a perfect state, is removed and replaced by atoms of silica, as we are of the means by which the const.i.tuent parts of a volcanic rock could be thus acted on.

(Beudant "Voyage en Hongrie" tome 3 pages 502, 504 describes kidney-shaped ma.s.ses of jasper-opal, which either blend into the surrounding trachytic conglomerate, or are embedded in it like chalk-flints; and he compares them with the fragments of opalised wood, which are abundant in this same formation. Beudant, however, appears to have viewed the process of their formation rather as one of simple infiltration than of molecular exchange; but the presence of a concretion, wholly different from the surrounding matter, if not formed in a pre-existing hollow, clearly seems to me to require, either a molecular or mechanical displacement of the atoms, which occupied the s.p.a.ce afterwards filled by it. The jasper-opal of Hungary pa.s.ses into chalcedony, and therefore in this case, as in that of Ascension, jasper seems to be intimately related in origin with chalcedony.) I was led to the careful examination of these rocks, and to the conclusion here given, from having heard the Rev. Professor Henslow express a similar opinion, regarding the origin in trap-rocks of many chalcedonies and agates. Siliceous deposits seem to be very general, if not of universal occurrence, in partially decomposed trachytic tuffs (Beudant "Voyage Min." tome 3 page 507 enumerates cases in Hungary, Germany, Central France, Italy, Greece, and Mexico.); and as these hills, according to the view above given, consist of trachyte softened and altered in situ, the presence of free silica in this case may be added as one more instance to the list.

CONCRETIONS IN PUMICEOUS TUFF.

The hill, marked in Map 2 "Crater of an old volcano," has no claims to this appellation, which I could discover, except in being surmounted by a circular, very shallow, saucer-like summit, nearly half a mile in diameter.

This hollow has been nearly filled up with many successive sheets of ashes and scoriae, of different colours, and slightly consolidated. Each successive saucer-shaped layer crops out all round the margin, forming so many rings of various colours, and giving to the hill a fantastic appearance. The outer ring is broad, and of a white colour; hence it resembles a course round which horses have been exercised, and has received the name of the Devil's Riding School, by which it is most generally known.

These successive layers of ashes must have fallen over the whole surrounding country, but they have all been blown away except in this one hollow, in which probably moisture acc.u.mulated, either during an extraordinary year when rain fell, or during the storms often accompanying volcanic eruptions. One of the layers of a pinkish colour, and chiefly derived from small, decomposed fragments of pumice, is remarkable, from containing numerous concretions. These are generally spherical, from half an inch to three inches in diameter; but they are occasionally cylindrical, like those of iron-pyrites in the chalk of Europe. They consist of a very tough, compact, pale-brown stone, with a smooth and even fracture. They are divided into concentric layers by thin white part.i.tions, resembling the external superficies; six or eight of such layers are distinctly defined near the outside; but those towards the inside generally become indistinct, and blend into a h.o.m.ogeneous ma.s.s. I presume that these concentric layers were formed by the shrinking of the concretion, as it became compact. The interior part is generally fissured by minute cracks or septaria, which are lined, both by black, metallic, and by other white and crystalline specks, the nature of which I was unable to ascertain. Some of the larger concretions consist of a mere spherical sh.e.l.l, filled with slightly consolidated ashes. The concretions contain a small proportion of carbonate of lime: a fragment placed under the blowpipe decrepitates, then whitens and fuses into a blebby enamel, but does not become caustic. The surrounding ashes do not contain any carbonate of lime; hence the concretions have probably been formed, as is so often the case, by the aggregation of this substance. I have not met with any account of similar concretions; and considering their great toughness and compactness, their occurrence in a bed, which probably has been subjected only to atmospheric moisture, is remarkable.

FORMATION OF CALCAREOUS ROCKS ON THE SEA-COAST.

On several of the sea-beaches, there are immense acc.u.mulations of small, well-rounded particles of sh.e.l.ls and corals, of white, yellowish, and pink colours, interspersed with a few volcanic particles. At the depth of a few feet, these are found cemented together into stone, of which the softer varieties are used for building; there are other varieties, both coa.r.s.e and fine-grained, too hard for this purpose: and I saw one ma.s.s divided into even layers half an inch in thickness, which were so compact that when struck with a hammer they rang like flint. It is believed by the inhabitants, that the particles become united in the course of a single year. The union is effected by calcareous matter; and in the most compact varieties, each rounded particle of sh.e.l.l and volcanic rock can be distinctly seen to be enveloped in a husk of pellucid carbonate of lime.

Extremely few perfect sh.e.l.ls are embedded in these agglutinated ma.s.ses; and I have examined even a large fragment under a microscope, without being able to discover the least vestige of striae or other marks of external form: this shows how long each particle must have been rolled about, before its turn came to be embedded and cemented. (The eggs of the turtle being buried by the parent, sometimes become enclosed in the solid rock. Mr.

Lyell has given a figure ("Principles of Geology" book 3 chapter 17) of some eggs, containing the bones of young turtles, found thus entombed.) One of the most compact varieties, when placed in acid, was entirely dissolved, with the exception of some flocculent animal matter; its specific gravity was 2.63. The specific gravity of ordinary limestone varies from 2.6 to 2.75; pure Carrara marble was found by Sir H. De la Beche to be 2.7.

("Researches in Theoretical Geology" page 12.) It is remarkable that these rocks of Ascension, formed close to the surface, should be nearly as compact as marble, which has undergone the action of heat and pressure in the plutonic regions.

The great acc.u.mulation of loose calcareous particles, lying on the beach near the Settlement, commences in the month of October, moving towards the S.W., which, as I was informed by Lieutenant Evans, is caused by a change in the prevailing direction of the currents. At this period the tidal rocks, at the S.W. end of the beach, where the calcareous sand is acc.u.mulating, and round which the currents sweep, become gradually coated with a calcareous incrustation, half an inch in thickness. It is quite white, compact, with some parts slightly spathose, and is firmly attached to the rock. After a short time it gradually disappears, being either redissolved, when the water is less charged with lime, or more probably is mechanically abraded. Lieutenant Evans has observed these facts, during the six years he has resided at Ascension. The incrustation varies in thickness in different years: in 1831 it was unusually thick. When I was there in July, there was no remnant of the incrustation; but on a point of basalt, from which the quarrymen had lately removed a ma.s.s of the calcareous freestone, the incrustation was perfectly preserved. Considering the position of the tidal-rocks, and the period at which they become coated, there can be no doubt that the movement and disturbance of the vast acc.u.mulation of calcareous particles, many of them being partially agglutinated together, cause the waves of the sea to be so highly charged with carbonate of lime, that they deposit it on the first objects against which they impinge. I have been informed by Lieutenant Holland, R.N., that this incrustation is formed on many parts of the coast, on most of which, I believe, there are likewise great ma.s.ses of comminuted sh.e.l.ls.

A FRONDESCENT CALCAREOUS INCRUSTATION.

(FIGURE 5. AN INCRUSTATION OF CALCAREOUS AND ANIMAL MATTER, coating the tidal-rocks at Ascension.)

In many respects this is a singular deposit; it coats throughout the year the tidal volcanic rocks, that project from the beaches composed of broken sh.e.l.ls. Its general appearance is well represented in Figure 5; but the fronds or discs, of which it is composed, are generally so closely crowded together as to touch. These fronds have their sinuous edges finely crenulated, and they project over their pedestals or supports; their upper surfaces are either slightly concave, or slightly convex; they are highly polished, and of a dark grey or jet black colour; their form is irregular, generally circular, and from the tenth of an inch to one inch and a half in diameter; their thickness, or amount of their projection from the rock on which they stand, varies much, about a quarter of an inch being perhaps most usual. The fronds occasionally become more and more convex, until they pa.s.s into botryoidal ma.s.ses with their summits fissured; when in this state, they are glossy and of an intense black, so as to resemble some fused metallic substance. I have shown the incrustation, both in this latter and in its ordinary state to several geologists, but not one could conjecture its origin, except that perhaps it was of volcanic nature!

The substance forming the fronds has a very compact and often almost crystalline fracture; the edges being translucent, and hard enough easily to scratch calcareous spar. Under the blowpipe it immediately becomes white, and emits a strong animal odour, like that from fresh sh.e.l.ls. It is chiefly composed of carbonate of lime; when placed in muriatic acid it froths much, leaving a residue of sulphate of lime, and of an oxide of iron, together with a black powder, which is not soluble in heated acids.

This latter substance seems to be carbonaceous, and is evidently the colouring matter. The sulphate of lime is extraneous, and occurs in distinct, excessively minute, lamellar plates, studded on the surface of the fronds, and embedded between the fine layers of which they are composed; when a fragment is heated in the blowpipe, these lamellae are immediately rendered visible. The original outline of the fronds may often be traced, either to a minute particle of sh.e.l.l fixed in a crevice of the rock, or to several cemented together; these first become deeply corroded, by the dissolving power of the waves, into sharp ridges, and then are coated with successive layers of the glossy, grey, calcareous incrustation.

The inequalities of the primary support affect the outline of every successive layer, in the same manner as may often be seen in bezoar-stones, when an object like a nail forms the centre of aggregation. The crenulated edges, however, of the frond appear to be due to the corroding power of the surf on its own deposit, alternating with fresh depositions. On some smooth basaltic rocks on the coast of St. Jago, I found an exceedingly thin layer of brown calcareous matter, which under a lens presented a miniature likeness of the crenulated and polished fronds of Ascension; in this case a basis was not afforded by any projecting extraneous particles. Although the incrustation at Ascension is persistent throughout the year; yet from the abraded appearance of some parts, and from the fresh appearance of other parts, the whole seems to undergo a round of decay and renovation, due probably to changes in the form of the s.h.i.+fting beach, and consequently in the action of the breakers: hence probably it is, that the incrustation never acquires a great thickness. Considering the position of the encrusted rocks in the midst of the calcareous beach, together with its composition, I think there can be no doubt that its origin is due to the dissolution and subsequent deposition of the matter composing the rounded particles of sh.e.l.ls and corals. (The selenite, as I have remarked is extraneous, and must have been derived from the sea-water. It is an interesting circ.u.mstance thus to find the waves of the ocean, sufficiently charged with sulphate of lime, to deposit it on the rocks, against which they dash every tide. Dr. Webster has described ("Voyage of the 'Chanticleer'" volume 2 page 319) beds of gypsum and salt, as much as two feet in thickness, left by the evaporation of the spray on the rocks on the windward coast.

Beautiful stalact.i.tes of selenite, resembling in form those of carbonate of lime, are formed near these beds. Amorphous ma.s.ses of gypsum, also, occur in caverns in the interior of the island; and at Cross Hill (an old crater) I saw a considerable quant.i.ty of salt oozing from a pile of scoriae. In these latter cases, the salt and gypsum appear to be volcanic products.) From this source it derives its animal matter, which is evidently the colouring principle. The nature of the deposit, in its incipient stage, can often be well seen upon a fragment of white sh.e.l.l, when jammed between two of the fronds; it then appears exactly like the thinnest wash of a pale grey varnish. Its darkness varies a little, but the jet blackness of some of the fronds and of the botryoidal ma.s.ses seems due to the translucency of the successive grey layers. There is, however, this singular circ.u.mstance, that when deposited on the under side of ledges of rock or in fissures, it appears always to be of a pale, pearly grey colour, even when of considerable thickness: hence one is led to suppose, that an abundance of light is necessary to the development of the dark colour, in the same manner as seems to be the case with the upper and exposed surfaces of the sh.e.l.ls of living mollusca, which are always dark, compared with their under surfaces and with the parts habitually covered by the mantle of the animal.

In this circ.u.mstance,--in the immediate loss of colour and in the odour emitted under the blowpipe,--in the degree of hardness and translucency of the edges,--and in the beautiful polish of the surface (From the fact described in my "Journal of Researches" of a coating of oxide of iron, deposited by a streamlet on the rocks in its bed (like a nearly similar coating at the great cataracts of the Orinoco and Nile), becoming finely polished where the surf acts, I presume that the surf in this instance, also, is the polis.h.i.+ng agent.), rivalling when in a fresh state that of the finest Oliva, there is a striking a.n.a.logy between this inorganic incrustation and the sh.e.l.ls of living molluscous animals. (In the section descriptive of St. Paul's Rocks, I have described a glossy, pearly substance, which coats the rocks, and an allied stalact.i.tical incrustation from Ascension, the crust of which resembles the enamel of teeth, but is hard enough to scratch plate-gla.s.s. Both these substances contain animal matter, and seem to have been derived from water in filtering through birds' dung.) This appears to me to be an interesting physiological fact.

(Mr. Horner and Sir David Brewster have described "Philosophical Transactions" 1836 page 65 a singular "artificial substance, resembling sh.e.l.l." It is deposited in fine, transparent, highly polished, brown- coloured laminae, possessing peculiar optical properties, on the inside of a vessel, in which cloth, first prepared with glue and then with lime, is made to revolve rapidly in water. It is much softer, more transparent, and contains more animal matter, than the natural incrustation at Ascension; but we here again see the strong tendency which carbonate of lime and animal matter evince to form a solid substance allied to sh.e.l.l.)

SINGULAR LAMINATED BEDS ALTERNATING WITH AND Pa.s.sING INTO OBSIDIAN.

These beds occur within the trachytic district, at the western base of Green Mountain, under which they dip at a high inclination. They are only partially exposed, being covered up by modern ejections; from this cause, I was unable to trace their junction with the trachyte, or to discover whether they had flowed as a stream of lava, or had been injected amidst the overlying strata. There are three princ.i.p.al beds of obsidian, of which the thickest forms the base of the section. The alternating stony layers appear to me eminently curious, and shall be first described, and afterwards their pa.s.sage into the obsidian. They have an extremely diversified appearance; five princ.i.p.al varieties may be noticed, but these insensibly blend into each other by endless gradations.

FIRST.

A pale grey, irregularly and coa.r.s.ely laminated (This term is open to some misinterpretation, as it may be applied both to rocks divided into laminae of exactly the same composition, and to layers firmly attached to each other, with no fissile tendency, but composed of different minerals, or of different shades of colour. The term "laminated," in this chapter, is applied in these latter senses; where a h.o.m.ogeneous rock splits, as in the former sense, in a given direction, like clay-slate, I have used the term "fissile."), harsh-feeling rock, resembling clay-slate which has been in contact with a trap-dike, and with a fracture of about the same degree of crystalline structure. This rock, as well as the following varieties, easily fuses into a pale gla.s.s. The greater part is honeycombed with irregular, angular, cavities, so that the whole has a curious appearance, and some fragments resemble in a remarkable manner silicified logs of decayed wood. This variety, especially where more compact, is often marked with thin whitish streaks, which are either straight or wrap round, one behind the other, the elongated carious hollows.

SECONDLY.

A bluish grey or pale brown, compact, heavy, h.o.m.ogeneous stone, with an angular, uneven, earthy fracture; viewed, however, under a lens of high power, the fracture is seen to be distinctly crystalline, and even separate minerals can be distinguished.

THIRDLY.

A stone of the same kind with the last, but streaked with numerous, parallel, slightly tortuous, white lines of the thickness of hairs. These white lines are more crystalline than the parts between them; and the stone splits along them: they frequently expand into exceedingly thin cavities, which are often only just perceptible with a lens. The matter forming the white lines becomes better crystallised in these cavities, and Professor Miller was fortunate enough, after several trials, to ascertain that the white crystals, which are the largest, were of quartz (Professor Miller informs me that the crystals which he measured had the faces P, z, m of the figure (147) given by Haidinger in his Translation of Mohs; and he adds, that it is remarkable, that none of them had the slightest trace of faces r of the regular six-sided prism.), and that the minute green transparent needles were augite, or, as they would more generally be called, diopside: besides these crystals, there are some minute, dark specks without a trace of crystalline, and some fine, white, granular, crystalline matter which is probably feldspar. Minute fragments of this rock are easily fusible.

FOURTHLY.

A compact crystalline rock, banded in straight lines with innumerable layers of white and grey shades of colour, varying in width from the thirtieth to the two-hundredth of an inch; these layers seem to be composed chiefly of feldspar, and they contain numerous perfect crystals of gla.s.sy feldspar, which are placed lengthways; they are also thickly studded with microscopically minute, amorphous, black specks, which are placed in rows, either standing separately, or more frequently united, two or three or several together, into black lines, thinner than a hair. When a small fragment is heated in the blowpipe, the black specks are easily fused into black brilliant beads, which become magnetic,--characters that apply to no common mineral except hornblende or augite. With the black specks there are mingled some others of a red colour, which are magnetic before being heated, and no doubt are oxide of iron. Round two little cavities, in a specimen of this variety, I found the black specks aggregated into minute crystals, appearing like those of augite or hornblende, but too dull and small to be measured by the goniometer; in the specimen, also, I could distinguish amidst the crystalline feldspar, grains, which had the aspect of quartz. By trying with a parallel ruler, I found that the thin grey layers and the black hair-like lines were absolutely straight and parallel to each other. It is impossible to trace the gradation from the h.o.m.ogeneous grey rocks to these striped varieties, or indeed the character of the different layers in the same specimen, without feeling convinced that the more or less perfect whiteness of the crystalline feldspathic matter depends on the more or less perfect aggregation of diffused matter, into the black and red specks of hornblende and oxide of iron.

FIFTHLY.

A compact heavy rock, not laminated, with an irregular, angular, highly crystalline, fracture; it abounds with distinct crystals of gla.s.sy feldspar, and the crystalline feldspathic base is mottled with a black mineral, which on the weathered surface is seen to be aggregated into small crystals, some perfect, but the greater number imperfect. I showed this specimen to an experienced geologist, and asked him what it was; he answered, as I think every one else would have done, that it was a primitive greenstone. The weathered surface, also, of the banded variety in Figure 4, strikingly resembles a worn fragment of finely laminated gneiss.

These five varieties, with many intermediate ones, pa.s.s and repa.s.s into each other. As the compact varieties are quite subordinate to the others, the whole may be considered as laminated or striped. The laminae, to sum up their characteristics, are either quite straight, or slightly tortuous, or convoluted; they are all parallel to each other, and to the intercalating strata of obsidian; they are generally of extreme thinness; they consist either of an apparently h.o.m.ogeneous, compact rock, striped with different shades of grey and brown colours, or of crystalline feldspathic layers in a more or less perfect state of purity, and of different thicknesses, with distinct crystals of gla.s.sy feldspar placed lengthways, or of very thin layers chiefly composed of minute crystals of quartz and augite, or composed of black and red specks of an augitic mineral and of an oxide of iron, either not crystallised or imperfectly so. After having fully described the obsidian, I shall return to the subject of the lamination of rocks of the trachytic series.

The pa.s.sage of the foregoing beds into the strata of gla.s.sy obsidian is effected in several ways: first, angulo-modular ma.s.ses of obsidian, both large and small, abruptly appear disseminated in a slaty, or in an amorphous, pale-coloured, feldspathic rock, with a somewhat pearly fracture. Secondly, small irregular nodules of the obsidian, either standing separately, or united into thin layers, seldom more than the tenth of an inch in thickness, alternate repeatedly with very thin layers of a feldspathic rock, which is striped with the finest parallel zones of colour, like an agate, and which sometimes pa.s.ses into the nature of pitchstone; the interstices between the nodules of obsidian are generally filled by soft white matter, resembling pumiceous ashes. Thirdly, the whole substance of the bounding rock suddenly pa.s.ses into an angulo-concretionary ma.s.s of obsidian. Such ma.s.ses (as well as the small nodules) of obsidian are of a pale green colour, and are generally streaked with different shades of colour, parallel to the laminae of the surrounding rock; they likewise generally contain minute white sphaerulites, of which half is sometimes embedded in a zone of one shade of colour, and half in a zone of another shade. The obsidian a.s.sumes its jet black colour and perfectly conchoidal fracture, only when in large ma.s.ses; but even in these, on careful examination and on holding the specimens in different lights, I could generally distinguish parallel streaks of different shades of darkness.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Volcanic Islands Part 3 summary

You're reading Volcanic Islands. This manga has been translated by Updating. Author(s): Charles Darwin. Already has 593 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com