The Automobile Storage Battery - BestLightNovel.com
You’re reading novel The Automobile Storage Battery Part 48 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
(e) When battery is more than a year old and action is unsatisfactory.
(Battery will not hold its charge.) Battery may have to be junked, or new separators may be required. Every battery should be reinsulated at least once during its lifetime.
(f) When a blacksmith, tinsmith, or plumber have tried to repair a case, Fig. 189.
[Fig. 189. A Blacksmith and Tinsmith Tried Their Hands on This Case, Lower Part Enclosed in Tin, Strap Iron, Covered with Friction Tape, Around The Top]
(g) When the ends of case are bulged. A new case is needed. If the battery has been frozen it should generally be junked. There are some cases on record of a frozen battery having been thawed out and put in serviceable condition by a long charge at a low rate followed by several cycles of discharge and recharge. Generally, at least, a new case, jars, and positives are required.
NOTE: New separators should always be installed, whenever a battery is opened for repairs, unless the separators already in the battery are new, and the trouble for which the battery was opened consists of a leaky jar, a separator left out, or some other trouble which does not require pulling the plates out of mesh.
CHAPTER 15.
REBUILDING THE BATTERY.
How to Open a Battery
[Fig. 190 Battery to be opened]
A battery is open when its plates have been drawn out of the hard rubber jars. All parts are then exposed, and accessible for inspection and repairs. In an a.s.sembled battery, the top of each cell is closed by a hard rubber cover. Leakproof joints are made between these covers and the rubber jars and the wooden case by means of sealing compound which is poured in place while in a molten condition, and joins the covers to the jars and which hardens as it cools. The joints between the covers and the posts which project through the covers are in many batteries made with sealing compound. The cells are then connected to each other by means of the cell connectors, also called "top-connectors," or simply "connectors." These connectors are joined to the lead posts, to which are connected the plate groups by fusing with a flame, and melting in additional lead to make a joint.
In opening a battery, we must first disconnect the cells from each other, and then open the joint made by the sealing compound between the covers and the jars and case. The plates may then be lifted out of the jars, and the battery is open. The steps necessary to open a battery follow, in the order in which they must be taken.
1. Clean the Battery. Set the battery on the tear down rack. See that the vent plugs are all tight in place. Then clean the outside of the battery. Remove the greater part of the dirt with a brush, old whisk-broom, or a putty knife. Then put the battery in the water, using a stiff bristled brush to remove whatever dirt was not removed in the first place. A four-inch paint brush is satisfactory for this work, and will last a year or more if taken care of. If water will not remove all the dirt, try a rag wet with gasoline.
2. Drilling Off the Connectors and Terminals. When you have cleaned the outside of the battery as thoroughly as possible, set the battery on the floor near your work bench. Make a sketch of the top of the battery, showing the exact arrangement of the terminals and connectors. This sketch should be made on the tag which is tied to the battery. Tic this tag on the handle near the negative terminal of the battery or tack it to the ease. Then drill down over the Center of the posts. For this you will need a large brace with a heavy chuck, a drill the same size as the post (the part that goes down into the battery), a large screw driver, a center punch, and a hammer.
[Fig. 191 Drilling post and cell connector]
With the center punch, mark the exact centers of the tops of the posts and connectors. Then drill down about half way through the connectors and terminals until you cut through the part of the connector which is welded to the post. When you can see a seam between the post and connector you have drilled through the welded part. See Figs. 191 and 192.
Now pry off the connectors with the screw driver, as shown in Fig.
193. Lay a flat tool such as a chisel or file on the top edge of the ease to avoid damaging the ease when prying off the connectors.
If any connector is still tight, and you cannot pry it off with a reasonable effort, drill down a little deeper, and it will come off easily, provided that the hole which you are drilling is exactly over the center of the post and as large as the post. There are five things to remember in drilling the connectors and posts:
[Fig. 192 Connector drilled to correct depth]
(a) Be sure that the hole is exactly over the center of the post.
(b) Do not drill too deep. Make each hole just deep enough so that the connector will come off easily. Fig. 192 shows a cross section of a post and connector drilled to the proper depth. Notice that you need not drill down the whole depth of the connector, because the bottom part is not burned to the post.
(c) Be sure that the drill makes the right sized hole to permit the connectors and terminals to be removed easily when drilled half way through. An electric drill will do the work much faster than a hand brace.
(d) Protect the edge of the battery box when you pry up the connectors with a screw driver.
(e) Remove your drill after the hole is well started and see whether the hole is in the center of the post. Should you find that it is off center, tilt the drill, and with the end of the drill pointing the center of the post as you drill, gradually straighten the drill. This will bring the hole over the center of the post.
Having removed the connectors, sweep all the lead drillings front the top of the battery into a box kept for lead drillings only. Fig. 194.
When this box is full, melt the drillings and pour off in the burning lead mould.
[Fig. 193 Prying off cell connector]
Post Seal. If the post seal consists of a lead sealing nut, this may be removed now. With some types of batteries (Willard and U. S. L.), drilling the connectors also breaks the post seal. With other batteries, such as the Vesta, Westinghouse, Prest-0-Lite, Universal, it is more difficult to break the post seal.
[Fig. 194 Brus.h.i.+ng lead drillings into box]
On these batteries, therefore, do not break this seal before drawing out the plates. You may find that it will not be necessary to separate the groups, and the post seal will not have to be broken at all, thereby saving yourself considerable time on the overhauling job.
3. Heating Up the Sealing Compound. Having disconnected the cells from each other by removing the cell connectors, the next step is to open the joint made by the sealing compound between the covers and jars.
Fig. 195 shows the battery ready for this step. When cold, the compound is a tough substance that sticks to the cover and jar, and hence it must be heated until it is so soft that it is easily removed.
There are several methods by means of which compound may be heated.
These are as follows:
Steam. This is the most popular, and undoubtedly the best means of heating the compound, and in the following instructions it will be a.s.sumed that steam has been used. The battery is either placed in a special box in which steam is sent, or else steam is sent directly into each cell through the vent tube. In the first method the compound is heated from the outside, and in the second it is heated from the inside of the cell.
[Fig. 195 Battery ready for steaming]
[Fig. 196 Drawing up an element]
If the battery is placed in the steaming box, about ten minutes will be required for the steam to heat up the sealing compound. For batteries which use but very little compound, less time is required.
if steam is sent directly into the cells through the vent tubes, five to seven minutes will generally be enough. The covers must be limp and the 1 compound must be soft before turning off the steam.
Hot Water. The electrolyte is poured out of the battery, which is then inverted in a vessel of hot water. This method is slower than the others, and is more expensive because it requires a larger volume of water to be heated.
Hot Putty Knife and Screwdriver. The compound may be dug out with a hot putty knife. This is a slow, unsatisfactory method in most instances, especially in those batteries which use a considerable amount of sealing compound. With some batteries using only a small quant.i.ty of compound, a heated putty knife may be run around the inside of the jar between the jar and the cover. This will break the joint between the cover and the jar, and allow the plates to be lifted out. The compound is then sc.r.a.ped from covers and inside of jars, heating the knife or screwdriver whenever it cools off.
Lead Burning Flame. Any soft lead burning flame may be used. Such a flame may be adjusted to any desired size. Where steam is available, a flame should, however, never be used. The temperature of the flame is very high, and the covers, jars, case, posts, and vent plugs may be burned and made worthless. Even for the expert repairman, a flame is not as satisfactory as steam.
The Gasoline Torch. This is the most unsatisfactory method, and should not be used if possible. The torch gives a hot, spreading flame and it is difficult to prevent the covers, jars, case, etc., from being burned. Do not use a gasoline torch if you can possibly avoid doing so. Alcohol torches are open to the same objections, and are not satisfactory, even in the hands of a highly skilled workman.
If a flame is used for heating the compound, be sure to blow out with a hand bellows or compressed air any gas that may have gathered above the plates, before you bring the flame near the battery.
Electric Heat. Special electric ovens for softening sealing compound are on the market. The heating element is brought close to the top of the battery. Where electric power is cheap, this method may be used.
Otherwise it is rather expensive.
[Fig. 197 Resting element on jar to drain]
When the sealing compound has been softened, place the battery on the floor between your feet. Grasp the two posts of one cell with pliers, and pull straight up with an even, steady pull. If the battery has been steamed long enough, the plates will come up easily, carrying with them the cover (or covers, if the batter has upper and lower covers) to which the compound is sticking, as shown in Fig. 196. Do not remove the plates of the other cells until later.
Rest the plates on the top of the jar just long enough to allow most of the acid to drain from them, Fig. 197. If you have removed the post seal, or if the seal consists of compound (old Philadelphia batteries), pry off the covers now with a screw driver. Otherwise, leave the covers in place while cleaning off the compound.
While the plates are resting on the jars to drain, sc.r.a.pe the compound from the covers with a warm screw driver or putty knife, Fig. 198.
Work quickly while the compound is still hot and soft, and comes off easily. As the compound cools it hardens and sticks to the covers and is removed with difficulty. If the battery has sealing compound around the posts, this should also be removed thoroughly, both from the cover and from the post.