BestLightNovel.com

A History of Science Volume III Part 8

A History of Science - BestLightNovel.com

You’re reading novel A History of Science Volume III Part 8 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

If molten matter exists beneath the crust of the earth, it must contract in cooling, and in so doing it must disturb the level of the portion of the crust already solidified. So a plausible explanation of the upheaval of continents and mountains was supplied by the Plutonian theory, as Hutton had from the first alleged. But now an important difference of opinion arose as to the exact rationale of such upheavals. Hutton himself, and practically every one else who accepted his theory, had supposed that there are long periods of relative repose, during which the level of the crust is undisturbed, followed by short periods of active stress, when continents are thrown up with volcanic suddenness, as by the throes of a gigantic earthquake. But now came Charles Lyell with his famous extension of the "uniformitarian" doctrine, claiming that past changes of the earth's surface have been like present changes in degree as well as in kind. The making of continents and mountains, he said, is going on as rapidly to-day as at any time in the past. There have been no gigantic cataclysmic upheavals at any time, but all changes in level of the strata as a whole have been gradual, by slow oscillation, or at most by repeated earthquake shocks such as are still often experienced.

In support of this very startling contention Lyell gathered a ma.s.s of evidence of the recent changes in level of continental areas. He corroborated by personal inspection the claim which had been made by Playfair in 1802, and by Von Buch in 1807, that the coast-line of Sweden is rising at the rate of from a few inches to several feet in a century. He cited Darwin's observations going to prove that Patagonia is similarly rising, and Pingel's claim that Greenland is slowly sinking.

Proof as to sudden changes of level of several feet, over large areas, due to earthquakes, was brought forward in abundance. c.u.mulative evidence left it no longer open to question that such oscillatory changes of level, either upward or downward, are quite the rule, and it could not be denied that these observed changes, if continued long enough in one direction, would produce the highest elevations. The possibility that the making of even the highest ranges of mountains had been accomplished without exaggerated catastrophic action came to be freely admitted.

It became clear that the supposedly stable-land surfaces are in reality much more variable than the surface of the "s.h.i.+fting sea"; that continental ma.s.ses, seemingly so fixed, are really rising and falling in billows thousands of feet in height, ages instead of moments being consumed in the sweep between crest and hollow.

These slow oscillations of land surfaces being understood, many geological enigmas were made clear--such as the alternation of marine and fresh-water formations in a vertical series, which Cuvier and Brongniart had observed near Paris; or the sandwiching of layers of coal, of subaerial formation, between layers of subaqueous clay or sandstone, which may be observed everywhere in the coal measures. In particular, the extreme thickness of the sedimentary strata as a whole, many times exceeding the depth of the deepest known sea, was for the first time explicable when it was understood that such strata had formed in slowly sinking ocean-beds.

All doubt as to the mode of origin of stratified rocks being thus removed, the way was opened for a more favorable consideration of that other Huttonian doctrine of the extremely slow denudation of land surfaces. The enormous amount of land erosion will be patent to any one who uses his eyes intelligently in a mountain district. It will be evident in any region where the strata are tilted--as, for example, the Alleghanies--that great folds of strata which must once have risen miles in height have in many cases been worn entirely away, so that now a valley marks the location of the former eminence. Where the strata are level, as in the case of the mountains of Sicily, the Scotch Highlands, and the familiar Catskills, the evidence of denudation is, if possible, even more marked; for here it is clear that elevation and valley have been carved by the elements out of land that rose from the sea as level plateaus.

But that this herculean labor of land-sculpturing could have been accomplished by the slow action of wind and frost and shower was an idea few men could grasp within the first half-century after Hutton propounded it; nor did it begin to gain general currency until Lyell's crusade against catastrophism, begun about 1830, had for a quarter of a century accustomed geologists to the thought of slow, continuous changes producing final results of colossal proportions. And even long after that it was combated by such men as Murchison, Director-General of the Geological Survey of Great Britain, then accounted the foremost field-geologist of his time, who continued to believe that the existing valleys owe their main features to subterranean forces of upheaval.

Even Murchison, however, made some recession from the belief of the Continental authorities, Elie de Beaumont and Leopold von Buch, who contended that the mountains had sprung up like veritable jacks-in-the-box. Von Buch, whom his friend and fellow-pupil Von Humboldt considered the foremost geologist of the time, died in 1853, still firm in his early faith that the erratic bowlders found high on the Jura had been hurled there, like cannon-b.a.l.l.s, across the valley of Geneva by the sudden upheaval of a neighboring mountain-range.

AGa.s.sIZ AND THE GLACIAL THEORY

The bowlders whose presence on the crags of the Jura the old Gerinan accounted for in a manner so theatrical had long been a source of contention among geologists. They are found not merely on the Jura, but on numberless other mountains in all north-temperate lat.i.tudes, and often far out in the open country, as many a farmer who has broken his plough against them might testify. The early geologists accounted for them, as for nearly everything else, with their supposit.i.tious Deluge.

Brongniart and Cuvier and Buckland and their contemporaries appeared to have no difficulty in conceiving that ma.s.ses of granite weighing hundreds of tons had been swept by this current scores or hundreds of miles from their source. But, of course, the uniformitarian faith permitted no such explanation, nor could it countenance the projection idea; so Lyell was bound to find some other means of transportation for the puzzling erratics.

The only available medium was ice, but, fortunately, this one seemed quite sufficient. Icebergs, said Lyell, are observed to carry all manner of debris, and deposit it in the sea-bottoms. Present land surfaces have often been submerged beneath the sea. During the latest of these submergences icebergs deposited the bowlders now scattered here and there over the land. Nothing could be simpler or more clearly uniformitarian. And even the catastrophists, though they met Lyell amicably on almost no other theoretical ground, were inclined to admit the plausibility of his theory of erratics. Indeed, of all Lyell's nonconformist doctrines, this seemed the one most likely to meet with general acceptance.

Yet, even as this iceberg theory loomed large and larger before the geological world, observations were making in a different field that were destined to show its fallacy. As early as 1815 a sharp-eyed chamois-hunter of the Alps, Perraudin by name, had noted the existence of the erratics, and, unlike most of his companion hunters, had puzzled his head as to how the bowlders got where he saw them. He knew nothing of submerged continents or of icebergs, still less of upheaving mountains; and though he doubtless had heard of the Flood, he had no experience of heavy rocks floating like corks in water. Moreover, he had never observed stones rolling uphill and perching themselves on mountain-tops, and he was a good enough uniformitarian (though he would have been puzzled indeed had any one told him so) to disbelieve that stones in past times had disported themselves differently in this regard from stones of the present. Yet there the stones are. How did they get there?

The mountaineer thought that he could answer that question. He saw about him those gigantic serpent-like streams of ice called glaciers, "from their far fountains slow rolling on," carrying with them blocks of granite and other debris to form moraine deposits. If these glaciers had once been much more extensive than they now are, they might have carried the bowlders and left them where we find them. On the other hand, no other natural agency within the sphere of the chamois-hunter's knowledge could have accomplished this, ergo the glaciers must once have been more extensive. Perraudin would probably have said that common-sense drove him to this conclusion; but be that as it may, he had conceived one of the few truly original and novel ideas of which the nineteenth century can boast.

Perraudin announced his idea to the greatest scientist in his little world--Jean de Charpentier, director of the mines at Bex, a skilled geologist who had been a fellow-pupil of Von Buch and Von Humboldt under Werner at the Freiberg School of Mines. Charpentier laughed at the mountaineer's grotesque idea, and thought no more about it. And ten years elapsed before Perraudin could find any one who treated his notion with greater respect. Then he found a listener in M. Venetz, a civil engineer, who read a paper on the novel glacial theory before a local society in 1823. This brought the matter once more to the attention of De Charpentier, who now felt that there might be something in it worth investigation.

A survey of the field in the light of the new theory soon convinced Charpentier that the chamois-hunter had all along been right. He became an enthusiastic supporter of the idea that the Alps had once been imbedded in a ma.s.s of ice, and in 1836 he brought the notion to the attention of Louis Aga.s.siz, who was spending the summer in the Alps.

Aga.s.siz was sceptical at first, but soon became a convert.

In 1840 Aga.s.siz published a paper in which the results of his Alpine studies were elaborated.

"Let us consider," he says, "those more considerable changes to which glaciers are subject, or rather, the immense extent which they had in the prehistoric period. This former immense extension, greater than any that tradition has preserved, is proved, in the case of nearly every valley in the Alps, by facts which are both many and well established.

The study of these facts is even easy if the student is looking out for them, and if he will seize the least indication of their presence; and, if it were a long time before they were observed and connected with glacial action, it is because the evidences are often isolated and occur at places more or less removed from the glacier which originated them.

If it be true that it is the prerogative of the scientific observer to group in the field of his mental vision those facts which appear to be without connection to the vulgar herd, it is, above all, in such a case as this that he is called upon to do so. I have often compared these feeble effects, produced by the glacial action of former ages, with the appearance of the markings upon a lithographic stone, prepared for the purpose of preservation, and upon which one cannot see the lines of the draughtsman's work unless it is known beforehand where and how to search for them.

"The fact of the former existence of glaciers which have now disappeared is proved by the survival of the various phenomena which always accompany them, and which continue to exist even after the ice has melted. These phenomena are as follows:

"1. Moraines.--The disposition and composition of moraines enable them to be always recognized, even when they are no longer adjacent to a glacier nor immediately surround its lower extremities. I may remark that lateral and terminal moraines alone enable us to recognize with certainty the limits of glacial extension, because they can be easily distinguished from the dikes and irregularly distributed stones carried down by the Alpine torrents, The lateral moraines deposited upon the sides of valleys are rarely affected by the larger torrents, but they are, however, often cut by the small streams which fall down the side of a mountain, and which, by interfering with their continuity, make them so much more difficult to recognize.

"2. The Perched Bowlders.--It often happens that glaciers encounter projecting points of rock, the sides of which become rounded, and around which funnel-like cavities are formed with more or less profundity. When glaciers diminish and retire, the blocks which have fallen into these funnels often remain perched upon the top of the projecting rocky point within it, in such a state of equilibrium that any idea of a current of water as the cause of their transportation is completely inadmissible on account of their position. When such points of rock project above the surface of the glacier or appear as a more considerable islet in the midst of its ma.s.s (such as is the case in the Jardin of the Mer de Glace, above Montavert), such projections become surrounded on all sides by stones which ultimately form a sort of crown around the summit whenever the glaciers decrease or retire completely. Water currents never produce anything like this; but, on the contrary, whenever a stream breaks itself against a projecting rock, the stones which it carries down are turned aside and form a more or less regular trail.

Never, under such circ.u.mstances, can the stones remain either at the top or at the sides of the rock, for, if such a thing were possible, the rapidity of the current would be accelerated by the increased resistance, and the moving bowlders would be carried beyond the obstruction before they were finally deposited.

"3. The polished and striated rocks, such as have been described in Chapter XIV., afford yet further evidence of the presence of a glacier; for, as has been said already, neither a current nor the action of waves upon an extensive beach produces such effects. The general direction of the channels and furrows indicates the direction of the general movement of the glacier, and the streaks which vary more or less from this direction are produced by the local effects of oscillation and retreat, as we shall presently see.

"4. The Lapiaz, or Lapiz, which the inhabitants of German Switzerland call Karrenfelder, cannot always be distinguished from erosions, because, both produced as they are by water, they do not differ in their exterior characteristics, but only in their positions. Erosions due to torrents are always found in places more or less depressed, and never occur upon large inclined surfaces. The Lapiaz, on the contrary, are frequently found upon the projecting parts of the sides of valleys in places where it is not possible to suppose that water has ever formed a current. Some geologists, in their embarra.s.sment to explain these phenomena, have supposed that they were due to the infiltration of acidulated water, but this hypothesis is purely gratuitous.

"We will now describe the remains of these various phenomena as they are found in the Alps outside the actual glacial limits, in order to prove that at a certain epoch glaciers were much larger than they are to-day.

"The ancient moraines, situated as they are at a great distance from those of the present day, are nowhere so distinct or so frequent as in Valais, where MM. Venetz and J. de Charpentier noticed them for the first time; but as their observations are as yet unpublished, and they themselves gave me the information, it would be an appropriation of their discovery if I were to describe them here in detail. I will limit myself to say that there can be found traces, more or less distinct, of ancient terminal moraines in the form of vaulted dikes at the foot of every glacier, at a distance of a few minutes' walk, a quarter of an hour, a half-hour, an hour, and even of several leagues from their present extremities. These traces become less distinct in proportion to their distance from the glacier, and, since they are also often traversed by torrents, they are not as continuous as the moraines which are nearer to the glaciers. The farther these ancient moraines are removed from the termination of a glacier, the higher up they reach upon the sides of the valley, which proves to us that the thickness of the glacier must have been greater when its size was larger. At the same time, their number indicates so many stopping-places in the retreat of the glacier, or so many extreme limits of its extension--limits which were never reached again after it had retired. I insist upon this point, because if it is true that all these moraines demonstrate a larger extent of the glacier, they also prove that their retreat into their present boundaries, far from having been catastrophic, was marked on the contrary by periods of repose more or less frequent, which caused the formation of a series of concentric moraines which even now indicate their retrogression.

"The remains of longitudinal moraines are less frequent, less distinct, and more difficult to investigate, because, indicating as they do the levels to which the edges of the glacier reached at different epochs, it is generally necessary to look for them above the line of the paths along the escarpments of the valleys, and hence it is not always possible to follow them along a valley. Often, also, the sides of a valley which enclosed a glacier are so steep that it is only here and there that the stones have remained in place. They are, nevertheless, very distinct in the lower part of the valley of the Rhone, between Martigny and the Lake of Geneva, where several parallel ridges can be observed, one above the other, at a height of one thousand, one thousand two hundred, and even one thousand five hundred feet above the Rhone.

It is between St. Maurice and the cascade of p.i.s.sevache, close to the hamlet of Chaux-Fleurie, that they are most accessible, for at this place the sides of the valley at different levels ascend in little terraces, upon which the moraines have been preserved. They are also very distinct above the Bains de Lavey, and above the village of Monthey at the entrance of the Val d'Illiers, where the sides of the valley are less inclined than in many other places.

"The perched bowlders which are found in the Alpine valleys, at considerable distances from the glaciers, occupy at times positions so extraordinary that they excite in a high degree the curiosity of those who see them. For instance, when one sees an angular stone perched upon the top of an isolated pyramid, or resting in some way in a very steep locality, the first inquiry of the mind is, When and how have these stones been placed in such positions, where the least shock would seem to turn them over? But this phenomenon is not in the least astonis.h.i.+ng when it is seen to occur also within the limits of actual glaciers, and it is recalled by what circ.u.mstances it is occasioned.

"The most curious examples of perched stones which can be cited are those which command the northern part of the cascade of p.i.s.sevache, close to Chaux-Fleurie, and those above the Bains de Lavey, close to the village of Morcles; and those, even more curious, which I have seen in the valley of St. Nicolas and Oberhasli. At Kirchet, near Meiringen, can be seen some very remarkable crowns of bowlders around several domes of rock which appear to have been projected above the surface of the glacier which surrounded them. Something very similar can be seen around the top of the rock of St. Triphon.

"The extraordinary phenomenon of perched stones could not escape the observing eye of De Saussure, who noticed several at Saleve, of which he described the positions in the following manner: 'One sees,' said he, 'upon the slope of an inclined meadow, two of these great bowlders of granite, elevated one upon the other, above the gra.s.s at a height of two or three feet, upon a base of limestone rock on which both rest. This base is a continuation of the horizontal strata of the mountain, and is even united with it visibly on its lower face, being cut perpendicularly upon the other sides, and is not larger than the stone which it supports.' But seeing that the entire mountain is composed of the same limestone, De Saussure naturally concluded that it would be absurd to think that it was elevated precisely and only beneath the blocks of granite. But, on the other hand, since he did not know the manner in which these perched stones are deposited in our days by glacial action, he had recourse to another explanation: He supposes that the rock was worn away around its base by the continual erosion of water and air, while the portion of the rock which served as the base for the granite had been protected by it. This explanation, although very ingenious, could no longer be admitted after the researches of M. Elie de Beaumont had proved that the action of atmospheric agencies was not by a good deal so destructive as was theretofore supposed. De Saussure speaks also of a detached bowlder, situated upon the opposite side of the Tete-Noire, 'which is,' he says, 'of so great a size that one is tempted to believe that it was formed in the place it occupies; and it is called Barme russe, because it is worn away beneath in the form of a cave which can afford accommodation for more than thirty persons at a time."(4)

But the implications of the theory of glaciers extend, so Aga.s.siz has come to believe, far beyond the Alps. If the Alps had been covered with an ice sheet, so had many other regions of the northern hemisphere.

Casting abroad for evidences of glacial action, Aga.s.siz found them everywhere in the form of transported erratics, scratched and polished outcropping rocks, and moraine-like deposits. Finally, he became convinced that the ice sheet that covered the Alps had spread over the whole of the higher lat.i.tudes of the northern hemisphere, forming an ice cap over the globe. Thus the common-sense induction of the chamois-hunter blossomed in the mind of Aga.s.siz into the conception of a universal ice age.

In 1837 Aga.s.siz had introduced his theory to the world, in a paper read at Neuchatel, and three years later he published his famous Etudes sur les Glaciers, from which we have just quoted. Never did idea make a more profound disturbance in the scientific world. Von Buch treated it with alternate ridicule, contempt, and rage; Murchison opposed it with customary vigor; even Lyell, whose most remarkable mental endowment was an unfailing receptiveness to new truths, could not at once discard his iceberg theory in favor of the new claimant. Dr. Buckland, however, after Aga.s.siz had shown him evidence of former glacial action in his own Scotland, became a convert--the more readily, perhaps, as it seemed to him to oppose the uniformitarian idea. Gradually others fell in line, and after the usual imbittered controversy and the inevitable full generation of probation, the idea of an ice age took its place among the accepted tenets of geology. All manner of moot points still demanded attention--the cause of the ice age, the exact extent of the ice sheet, the precise manner in which it produced its effects, and the exact nature of these effects; and not all of these have even yet been determined. But, details aside, the ice age now has full recognition from geologists as an historical period. There may have been many ice ages, as Dr. Croll contends; there was surely one; and the conception of such a period is one of the very few ideas of our century that no previous century had even so much as faintly adumbrated.

THE GEOLOGICAL AGES

But, for that matter, the entire subject of historical geology is one that had but the barest beginning before our century. Until the paleontologist found out the key to the earth's chronology, no one--not even Hutton--could have any definite idea as to the true story of the earth's past. The only conspicuous attempt to cla.s.sify the strata was that made by Werner, who divided the rocks into three systems, based on their supposed order of deposition, and called primary, transition, and secondary.

Though Werner's observations were confined to the small province of Saxony, he did not hesitate to affirm that all over the world the succession of strata would be found the same as there, the concentric layers, according to this conception, being arranged about the earth with the regularity of layers on an onion. But in this Werner was as mistaken as in his theoretical explanation of the origin of the "primary" rocks. It required but little observation to show that the exact succession of strata is never precisely the same in any widely separated regions. Nevertheless, there was a germ of truth in Werner's system. It contained the idea, however faultily interpreted, of a chronological succession of strata; and it furnished a working outline for the observers who were to make out the true story of geological development. But the correct interpretation of the observed facts could only be made after the Huttonian view as to the origin of strata had gained complete acceptance.

When William Smith, having found the true key to this story, attempted to apply it, the territory with which he had to deal chanced to be one where the surface rocks are of that later series which Werner termed secondary. He made numerous subdivisions within this system, based mainly on the fossils. Meantime it was found that, judged by the fossils, the strata that Brongniart and Cuvier studied near Paris were of a still more recent period (presumed at first to be due to the latest deluge), which came to be spoken of as tertiary. It was in these beds, some of which seemed to have been formed in fresh-water lakes, that many of the strange mammals which Cuvier first described were found.

But the "transition" rocks, underlying the "secondary" system that Smith studied, were still practically unexplored when, along in the thirties, they were taken in hand by Roderick Impey Murchison, the reformed fox-hunter and ex-captain, who had turned geologist to such notable advantage, and Adam Sedgwick, the brilliant Woodwardian professor at Cambridge.

Working together, these two friends cla.s.sified the

transition rocks into chronological groups, since familiar to every one in the larger outlines as the Silurian system (age of invertebrates) and the Devonian system (age of fishes)--names derived respectively from the country of the ancient Silures, in Wales and Devons.h.i.+re, England. It was subsequently discovered that these systems of strata, which crop out from beneath newer rocks in restricted areas in Britain, are spread out into broad, undisturbed sheets over thousands of miles in continental Europe and in America. Later on Murchison studied them in Russia, and described them, conjointly with Verneuil and Von Kerserling, in a ponderous and cla.s.sical work. In America they were studied by Hall, Newberry, Whitney, Dana, Whitfield, and other pioneer geologists, who all but antic.i.p.ated their English contemporaries.

The rocks that are of still older formation than those studied by Murchison and Sedgwick (corresponding in location to the "primary" rocks of Werner's conception) are the surface feature of vast areas in Canada, and were first prominently studied there by William I. Logan, of the Canadian Government Survey, as early as 1846, and later on by Sir William Dawson. These rocks--comprising the Laurentian system--were formerly supposed to represent parts of the original crust of the earth, formed on first cooling from a molten state; but they are now more generally regarded as once-stratified deposits metamorphosed by the action of heat.

Whether "primitive" or metamorphic, however, these Canadian rocks, and a.n.a.logous ones beneath the fossiliferous strata of other countries, are the oldest portions of the earth's crust of which geology has any present knowledge. Mountains of this formation, as the Adirondacks and the Storm King range, overlooking the Hudson near West Point, are the patriarchs of their kind, beside which Alleghanies and Sierra Nevadas are recent upstarts, and Rockies, Alps, and Andes are mere parvenus of yesterday.

The Laurentian rocks were at first spoken of as representing "Azoic"

time; but in 1846 Dawson found a formation deep in their midst which was believed to b e the fossil relic of a very low form of life, and after that it became customary to speak of the system as "Eozoic." Still more recently the t.i.tle of Dawson's supposed fossil to rank as such has been questioned, and Dana's suggestion that the early rocks be termed merely Archman has met with general favor. Murchison and Sedgwick's Silurian, Devonian, and Carboniferous groups (the ages of invertebrates, of fishes, and of coal plants, respectively) are together spoken of as representing Paleozoic time. William Smith's system of strata, next above these, once called "secondary," represents Mesozoic time, or the age of reptiles. Still higher, or more recent, are Cuvier and Brongniart's tertiary rocks, representing the age of mammals. Lastly, the most recent formations, dating back, however, to a period far enough from recent in any but a geological sense, are cla.s.sed as quaternary, representing the age of man.

It must not be supposed, however, that the successive "ages" of the geologist are shut off from one another in any such arbitrary way as this verbal cla.s.sification might seem to suggest. In point of fact, these "ages" have no better warrant for existence than have the "centuries" and the "weeks" of every-day computation. They are convenient, and they may even stand for local divisions in the strata, but they are bounded by no actual gaps in the sweep of terrestrial events.

Moreover, it must be understood that the "ages" of different continents, though described under the same name, are not necessarily of exact contemporaneity. There is no sure test available by which it could be shown that the Devonian age, for instance, as outlined in the strata of Europe, did not begin millions of years earlier or later than the period whose records are said to represent the Devonian age in America. In attempting to decide such details as this, mineralogical data fail us utterly. Even in rocks of adjoining regions ident.i.ty of structure is no proof of contemporaneous origin; for the veritable substance of the rock of one age is ground up to build the rocks of subsequent ages.

Furthermore, in seas where conditions change but little the same form of rock may be made age after age. It is believed that chalk-beds still forming in some of our present seas may form one continuous ma.s.s dating back to earliest geologic ages. On the other hand, rocks different in character maybe formed at the same time in regions not far apart--say a sandstone along sh.o.r.e, a coral limestone farther seaward, and a chalk-bed beyond. This continuous stratum, broken in the process of upheaval, might seem the record of three different epochs.

Paleontology, of course, supplies far better chronological tests, but even these have their limitations. There has been no time since rocks now in existence were formed, if ever, when the earth had a uniform climate and a single undiversified fauna over its entire land surface, as the early paleontologists supposed. Speaking broadly, the same general stages have attended the evolution of organic forms everywhere, but there is nothing to show that equal periods of time witnessed corresponding changes in diverse regions, but quite the contrary.

To cite but a single ill.u.s.tration, the marsupial order, which is the dominant mammalian type of the living fauna of Australia to-day, existed in Europe and died out there in the tertiary age. Hence a future geologist might think the Australia of to-day contemporaneous with a period in Europe which in reality antedated it by perhaps millions of years.

All these puzzling features unite to render the subject of historical geology anything but the simple matter the fathers of the science esteemed it. No one would now attempt to trace the exact sequence of formation of all the mountains of the globe, as Elie de Beaumont did a half-century ago. Even within the limits of a single continent, the geologist must proceed with much caution in attempting to chronicle the order in which its various parts rose from the matrix of the sea. The key to this story is found in the identification of the strata that are the surface feature in each territory. If Devonian rocks are at the surface in any given region, for example, it would appear that this region became a land surface in the Devonian age, or just afterwards.

But a moment's consideration shows that there is an element of uncertainty about this, due to the steady denudation that all land surfaces undergo. The Devonian rocks may lie at the surface simply because the thousands of feet of carboniferous strata that once lay above them have been worn away. All that the cautious geologist dare a.s.sert, therefore, is that the region in question did not become permanent land surface earlier than the Devonian age.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

A History of Science Volume III Part 8 summary

You're reading A History of Science. This manga has been translated by Updating. Author(s): Henry Smith Williams. Already has 648 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com