The Romance of Aircraft - BestLightNovel.com
You’re reading novel The Romance of Aircraft Part 9 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
CHAPTER V
SOME OF THE PROBLEMS THE INVENTORS HAD TO SOLVE
Every American must feel a glow of pride when he stops to think that it was two of his fellow-countrymen, Wilbur and Orville Wright, who invented the airplane. But it is largely to France, our great ally and friend, that the credit must go for improving upon the invention of the Wrights, and making possible the wonderful aerial feats, the marvelous flights and accomplishments of the airplane of to-day. From the first day they saw an airplane flown, the French were wildly enthusiastic.
They gave freely of their money and their encouragement to help the good cause along. French inventors attacked the problems of the heavier-than-air machine with a will, and their unfailing determination and refusal to accept defeat or failure made final victory inevitable.
But before we could have the powerful fighting machines, the big cross country fliers and the seaplanes of to-day, there were many difficulties of construction which had to be met and solved.
First of all the pioneer designer had to choose between the monoplane, the biplane and the triplane. The monoplane was light in weight and could fly faster with the same powered engine than the biplane. But it was difficult to know just how to brace and strengthen the single pair of wings. In the biplane the struts between the wings gave strength and firmness. The wings of the monoplane were braced by wires to the body, but often they did not prove strong enough and the airplane collapsed in mid-air. In spite of this danger the monoplane was much in favor because of its speed.
Slower in speed, but stronger and a better weight lifter was the biplane. And in addition to strength it possessed more natural stability, a much sought after quality in the pioneer days.
Even more stable and with greater lifting powers than the biplane was the triplane, but the difficulty here was the lack of an airplane motor of sufficient strength to drive it. Until clever engineers came to the rescue with an improved aircraft motor, the triplane was very much in disfavor.
The monoplane, indeed, captured most of the early records for speed and it was this type of machine that was generally built by the sportsman type of airman, while men like the Wright brothers and others whose aim was to develop an airplane of unusual reliability and suited to many purposes, turned to the biplane and gave many hours and months and years of their time to its improvement.
Once the choice of a _type_ had been made, there were countless other problems. _Stability_ was of prime importance and the airmen of a few years ago labored desperately to attain it. They knew all too little about the airplane from a scientific angle. We have seen in our brief study that the method of obtaining balance in a glider or an airplane is to see that its _center of weight_ coincides with the center of the _upward pressure_ of air. How to bring this happy state of things about was a source of much debate. Some suggested that instead of a tail at the stern a tail in front of the main planes of the machine would help to balance it in flight. Some placed the pilot's seat above both planes of the biplane, while others thought he should sit below. Many of these queer ideas were tried out and by dint of hard practise and many failures certain simple elementary facts were finally weeded out and set down.
Probably the addition of a "fuselage" or body to the modern airplane has had something to do with helping in the proper distribution of its weight and increasing its stability. Larger at the bow and tapering toward the stern where a fixed tail piece or horizontal stabilizing plane is attached, it resembled more or less closely the general outlines of a fish or bird. And this "streamline form" greatly reduces the _head resistance_, another important subject on which there was very little known when the first of the airplanes was built. In addition to having only a very slow and inefficient engine the early machine suffered from the head resistance it created as it pushed forward through the air, and this check to its progress ate up the little speed its motor could develop. For if the airman of 1908 or 1909 was made miserable by his fear of winds, gusts and aerial whirlpools which might upset him in mid-air, his fears in this direction were completely overshadowed by his worries about a suitable motor. If the design of his craft was faulty and it proved "balky" when he attempted flight, he had only himself to blame. But for an engine he had to rely entirely upon some one else. The airplane could be a "home-made" article, but the engine had to be chosen from such as were on the market.
The Wright brothers in their first flying machine used a made-over automobile engine of 12 horsepower. It was not long before this was improved upon, and later Wright machines had a four-cylinder, water-cooled engine developing 35 horsepower. Its weight had been reduced as far as possible and its simplicity of design was its greatest recommendation.
Undoubtedly the engine problem has been the big one in the history of aviation. The coming of the internal combustion engine might be said to have placed practical aviation within the range of possibility, but at that it took a long time to evolve a motor especially suited to the needs of aircraft. There were three things needed in an airplane motor: _Light weight_, _high power_, and _absolute reliability_. How important the third factor is we can imagine if we stop to think that nothing keeps the heavier-than-air machine afloat but its own speed, creating an air pressure beneath its wings. Like the boy who runs with his kite in order to make it go up, the airplane must "go" if it would rise, and the moment its engine fails there is nothing to prevent it from falling to the earth. The driver of a motor car, can, if his engine goes wrong, get out and go over it carefully until he finds what the difficulty is. The pilot of an airplane, soaring thousands of feet above the earth, is at the mercy of his motor's reliability or lack of it. Engine failure was, and still is, one of the greatest dangers the airman has to fear.
Another chief cause of trouble in early airplane motors was overheating.
Before actual airplane engines had been designed there was nothing to do but to use the type of engine which had been designed for the automobile, with as much reduction in weight as could be secured. But the automobile engine was never intended to run at top speed continuously and for long periods, as the airplane engine necessarily must do. In a car the motor has little stops and rests, as it is throttled down for a moment or changes in speed are made, and these breathing spells help it very much indeed in the "cooling off" process.
The airplane engine does not have these little between-time naps. The result was that the automobile engine installed in the early airplane invariably overheated and caused serious trouble. Under these conditions no flights of any distance could possibly be attempted.
Yet at the Rheims Meeting of 1909 Henry Farman surprised the world by remaining in the air two hours in a continuous flight. Up to that time the feat had never been equaled or approached. Aviators were amazed and sought an explanation. The answer was: the Gnome motor.
Anxious to help the airplane in its forward march, French engineers had good naturedly set to work and the Gnome motor was their first answer to the anxious question of "What engine?" It involved a new and ingenious system of cooling which made it possible for Farman to drive his big machine round and round the Rheims course until stopped by darkness, but without ever experiencing the slightest difficulty with his motor.
Before attempting to understand the secret of superiority of this first real airplane motor over others of its day, we must know a little more about the elementary principles of any internal combustion engine. The diagram on page 156 shows _one cylinder_ of such an engine in action.
A mixture of gasoline and air--called "carbureted air"--is introduced through a valve opening into a chamber or cylinder, as shown in figure A of the diagram. The valve opening then closes, and the piston moves forward compressing the gases enclosed in the cylinder, as shown in figure B. An electric spark suddenly explodes these compressed gases, causing them to expand with the greatest violence and drive the piston back. This action, which is shown in figure C, is called the "power stroke," for, transmitted by the piston rod to the crankshaft it furnishes the power which turns the propeller and sends the airplane forward through the air. Just before the piston reaches the end of the power stroke the exhaust valve opens, and the exploded gases are forced out of the chamber, partly by the force of their own tension and partly by the upward stroke of the piston, as shown in figure D.
The carbureted air is supplied to the cylinder from a chamber called the "carbureter." Here it is produced by the mixture of a gasoline spray--similar to the fine spray of an atomizer--with the air.
[Ill.u.s.tration: DIAGRAM OF AN INTERNAL COMBUSTION ENGINE CYLINDER, SHOWING PRINCIPLE ON WHICH IT WORKS]
A spark plug is fitted to the cylinder, and a break current from an electric magneto causes the spark which at the proper instant explodes the compressed gases.
Since by means of the explosion of the gases the force is produced which drives the airplane propeller, the violence and frequency of these explosions determine the power of the engine. Greater power can be obtained either by increasing the size of the cylinder so that it can hold more of the carbureted air, making a greater explosion possible; or else by causing more frequent explosions. The latter is the better method in an airplane engine, as larger cylinders mean more weight to be carried. In the average airplane engine from 1500 to 2000 explosions or revolutions occur per minute.
The combustion cylinder of an aircraft engine is usually built of steel, and the piston of cast iron or aluminum, which furnishes a very smooth gliding surface. The piston rod transmits the power to the crankshaft, a long rotating piece of steel. Every time the piston rod is thrust down by the explosion in the cylinder, its motion serves to turn the crankshaft and thus the vertical motion of the piston is transformed into the rotary motion which sends the propeller whirling through the air.
Wherever two surfaces of metal must rub against each other, as in the case of the piston and the cylinder, there is bound to be a great amount of friction. This friction causes the parts to heat and in time it wears away the surfaces and destroys the efficiency of the engine. In order to avoid this, the surfaces must be kept constantly well oiled or "lubricated." In some engines all the parts are enclosed in one large box or "crank case" which is filled with oil. Small holes are bored through to the surfaces to be lubricated, and the oil is splashed upon them by the motions of the piston rod, the crankshaft, etc., as they plunge through the oil bath.
But overheating of the cylinder may cause this oil to decompose and in order to prevent this a "cooling system" is necessary. For only when the engine is kept cool and properly oiled can it be expected to run smoothly or give satisfactory service.
So now we come back to the problem of cooling, which caused so much anxiety and trouble to the early aviators. With their engines running at the great speed which was necessary to keep the airplane in the air, overheating and engine difficulties were sure to arise. Cooling of the cylinder is accomplished in one of two ways: either by water or by air.
If water is used, a "jacket" in which the water circulates is placed around the cylinder,--the water as it becomes heated pa.s.sing out of the jacket to the radiator, where it is cooled before it returns. The radiator, at the very front of the airplane body, is exposed to the swift current of the air as the machine drives forward, and this air current serves to reduce the temperature of the water.
This method was the one originally employed with the automobile engine, but in the early models the cooling system, though adequate for the motor car, was hopelessly insufficient when the same engine was installed in an airplane.
It was the Gnome manufacturers who first thought of a most ingenious scheme for cooling the cylinders of the internal combustion engine.
Instead of having the piston and the crankshaft move, it was the cylinder itself which moved in the Gnome motor, while the crankshaft and piston were stationary. Thus cooling was very easily accomplished, for the cylinders, flying through the air, making as many as 1500 revolutions per minute, cooled themselves.
The crankshaft in the Gnome motor had been hollowed out to form a tube or pipe, through which the fuel or carbureted air pa.s.sed to the cylinder by means of a valve in the head of the piston which worked automatically. The Gnome could be built up of any number of cylinders, according to the power required. Its cylinders were set in a circle about the crankshaft, so that the entire engine occupied a minimum of s.p.a.ce in the airplane body. Scouted at first as a freak engine, it soon proved its superiority over all those in use and was rapidly adopted by builders of all types of airplanes.
To-day the stationary engine has been greatly improved, its provisions for cooling have been increased and it is once more looked on with favor by many manufacturers of aircraft.
The cylinders of an internal combustion engine can be grouped in one of three ways, and thus there are three main types of airplane engines we should be able to recognize. They are the _straight-line_ engine, the _V-type_, and the _radial_. In the straight-line model four, six, or even a larger number of cylinders are placed in a row in one crank case.
In the V-type of motor they are set instead in two lines, like a letter V; while in the radial type the cylinders form a circle around the central crankshaft. The radial motor may be stationary or its cylinders may revolve, in which case it becomes a rotary engine, as for instance, the Gnome.
Each of these types of motors has its peculiar advantages. The least "head resistance" is caused by a straight line engine, and this type also uses less fuel and oil. But it is usually heavier in weight, owing to the larger cooling system necessary and the longer crankshaft, and it takes up more room in the airplane fuselage than a motor of the compact radial type. The radial engine is very light in weight,--a big item in the airplane--but it consumes a large quant.i.ty of fuel and oil and besides produces a maximum "head resistance." The V-type motor is a compromise between the two,--lighter in weight than the straight-line, less wasteful of fuel and causing less "head resistance" than the radial.
The rotary engine, because of its appet.i.te for fuel and oil is no longer used in airplanes which are intended for long distance flights, because here the weight of the extra fuel carried has to be considered. In short distance, high-speed machines it works well, but in the larger planes the vertical or V-type motor has been found to give greater satisfaction.
When we read of the enormous trouble the pioneers of aviation went to, in order to find an engine suitable to drive the propeller of the airplane, we cannot help wondering just how the revolving of the propeller sends the whole machine flying forward through the air. The matter is very simply explained. The propeller of a s.h.i.+p is often referred to as the s.h.i.+p's "screw," and though few people have ever compared it with the small screws they use about the house, or with the screw and screw driver in the tool chest, there is in fact very little difference in principle.
Take a screw and place it against a block of wood, and then commence to turn it with a screw driver. Straight into the wood its curved edges will cut their way, dragging the round steel rod of the screw behind them. With every turn they will cut in deeper and carry the screw forward through the wood. That is what the propeller of a s.h.i.+p or an airplane does: it screws its way through the water or the air. But of course there is this difference, that the wood offers great resistance to the forward motion of the screw, while the water offers much less resistance to the s.h.i.+p's propeller, and the air less still to the propeller of the airplane. If, as in the case of the screw-driver, the airplane propeller is in front of the airplane and drags its load along behind it, it is called a "tractor" propeller; but if instead it is placed at the stern of the airplane, and as it screws through the air it pushes the airplane along ahead of it, then it is known as a "pusher"
propeller.
The little cutting edge that winds round and round an ordinary screw is referred to as its _thread_, and the distance between two of these edges or threads is known as the _pitch_. In some screws the threads are very close or, to put it another way, the pitch is small, while in others it is much greater. Each blade of a propeller is really a portion of a screw. To go back to the example of the screw-driver and the block of wood, every time the screw is turned once around it will advance into the wood a distance equal to its pitch. The same thing is theoretically true of the propeller of an airplane; at each revolution it might be expected to advance through the air a distance equal to the pitch that has been given to its blades.
But the air may allow the propeller to slip back and so lose some of its speed, a thing which was not possible with the screw-driver. This tendency to slip varies with the pitch of the propeller and the speed of its revolutions. A propeller which works splendidly when turning at a given rate, may prove worse than useless when the engine is slowed down and it is only making half the number of revolutions per minute. And so we begin to see another of the big problems of the pioneer airmen: to determine the right pitch for the propeller in relation to the speed which had been determined upon for the airplane. It is a problem that has not been wholly solved to-day, because of the fact that an airplane cannot always be driven at "top speed." If the maximum speed of the machine is 150 miles per hour, and the propeller has been designed to deal with the air efficiently at this speed, it is apt to slip and slide and waste away the power of the engine when for any reason it is necessary to slow down to 100 miles per hour. The only answer to the difficulty is a "variable pitch propeller" which may be altered to conform with alterations in speed, but up to the present time nothing really satisfactory along this line has been devised.
Another question in connection with the propeller has been of what material to make it. Wood is most generally used to-day, for although steel and aluminum have been tried, they have not been found to stand the strain so well. Imagine for one moment the stress upon an airplane propeller beating through the air at the rate of 1500 revolutions per minute. The greatest strength has been secured by building it up of several pieces of wood which are fastened strongly together and varnished.
_Materials_ have always presented a source of endless experiment and differences of opinion in the construction of the airplane. The problem has come up in connection with the fuselage, the wings and wing coverings, the landing cha.s.sis--in fact, each and every part of the heavier-than-air machine has raised the old query: "What shall we make it of?"
In the earlier machines wood was almost entirely used in airplane construction. For one thing it was cheaper, and for another it was easier to get wood working machinery, than the complicated and expensive machinery necessary to construct airplanes out of metal. Metals are stronger but they cost more and they make the problem of repairs more difficult.
The wings of the airplane are usually built up on a wooden framework which gives them their shape and curve. Many have been the disputes over the matter of wing coverings. In the pioneer machines they were covered with cotton material which had not been treated to make it water-proof or air-proof. It gave the poorest kind of service, and an effort was made to improve it by rubberizing it, but this process did not produce a wing of lasting durability. Many other treatments were experimented with, but with little success until the substance known as "dope" made its appearance.
"Dope" is largely composed of acetyl cellulose. It makes the wing covering proof against rain, wind, and the oil thrown off from the airplane engine, and gives it a fine, smooth finish and excellent durability. Two or three coats of it are usually applied, with a final coat of varnish on top, to produce a wing that is sure to prove strong and trustworthy.
The problems of starting and landing the airplane have been many. The early Wright machine had to run on a little trolley down a track in order to gain sufficient momentum to take to the air. Later machines showed an improvement on this. Henry Farman attached wooden skids to the bottom of his airplane and fastened wheels to them by means of heavy rubber bands. Thus he could start his motor and run over the ground until his speed permitted him to rise, while in making a descent the wheels flew back on their flexible bands and the stout skids absorbed the shock of the fall. Most of the modern machines have a wheeled framework below the fuselage, which permits them to run over the ground in starting and also in making a descent. The danger of engine failure becomes very important when near to the ground, as the pilot has no time to get his machine into a gradual glide and avoid a bad accident. This danger is sometimes averted by installing two engines, so that if one stops the other will carry the airplane on up into the air and prevent a smash-up. But the thing which has greatest effect on the ability of the airplane to land easily is its own design and speed. The wings of the airplane, its propeller and its whole construction have been planned so that it can support itself best in the air when flying at a certain fixed speed. Suppose this speed for a certain type of airplane to be 150 miles per hour. The airplane cannot land while traveling at that rate, yet its speed while still in the air can only be diminished to a certain point with safety, and below that point it may not be able to sustain itself in flight. The pilot must be able to land his machine without accident and without throttling his engine below this danger line; while the designer of airplanes must struggle to produce a machine which, while flying best at its maximum speed, will _fly_ at a much lower rate of motion, when necessary to effect a landing.
The supporting power of the wings depends partly on their size and partly on their rate of motion. Small wings moving at high speed produce the same supporting pressure of air beneath them as large wings flying at slow speed. The problem of a safe landing could best be solved by building wings whose area could be altered in mid-air. When traveling under full power the pilot would reduce the wing spread, as the smaller wings would then be sufficient to support the weight of the machine and would create less air resistance. When about to land, he would increase the spread of the wings, so that at the slower rate of motion through the air he might take advantage of a larger supporting surface. Nothing of this sort has yet been worked out on a practical scale, but many have been the suggestions for "telescoping wings."
The reduction of "head resistance" and the "streamlining" of the airplane have received their goodly share of attention and experiment.
To-day the airplane fuselage is carefully streamlined, but the landing cha.s.sis beneath it creates a good deal of resistance to motion. Probably this problem will be solved by devising a landing cha.s.sis which, after the machine has arisen from the ground, can be drawn up inside the body, and let down again to make a landing, but this is another important question which is not yet worked out in the airplanes of the present time.