BestLightNovel.com

The Sum of all Fears Part 79

The Sum of all Fears - BestLightNovel.com

You’re reading novel The Sum of all Fears Part 79 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

"Yeah, now we just have to figure a way to stop your boy."

"Good luck."

"He's a great kid, Brent. G.o.dd.a.m.n if he can't run."

"He isn't just an athlete. Kid's got brains, and a good heart."

"Brent, if you educated him, I know he's smart," Bunker said generously. "I just wish he'd pull a hamstring right about now."

Dawkins found his sergeant a few minutes later. "Something funny here," he said.

"What's that?"

"This truck-little white van on the east end of the row of big satellite trucks, 'ABC' painted on it. Colorado commercial tags, but supposedly it's from Chicago or maybe Omaha. I check 'em through, said they had a tape deck to replace a broken one, but when I walked past it a few minutes ago, it wasn't hooked up, and the guys who brought it in were gone."

"What are you telling me?" the sergeant asked.

"I think it might be a good idea to check it out."

"Okay, call it in. I'll give it a walk-past." The sergeant looked at the clipboard to check the tag number. "I was headed off to help out the Wells Fargo guys at the loading dock. You take that for me, okay?"

"Sure, Sarge." Dawkins headed off.

The watch supervisor lifted his Motorola radio. "Lieutenant Vernon, this is Sergeant Yankevich, could you meet me down at the TV place?"

Yankevich started walking back south around the stadium. He had his own personal radio, but it lacked an earpiece. San Diego stopped the Vikings on downs. Minnesota punted-a good one that required a fair catch at the Chargers' thirty. Well, maybe his team could get the game even. Somebody ought to shoot that Wills kid, he thought angrily.

Officer Dawkins walked to the north end of the stadium and saw a Wells Fargo armored car parked at the lower-level loading dock. One man was trying to sling out bags of what had to be coins.

"What's the problem?"

"The driver's beat his knee up, he's off having it fixed. Can you give me a hand?"

"Inside or outside?" Dawkins asked.

"You hand them out, okay? Be careful, they're heavy mothers."

"Gotcha." Dawkins hopped inside. The interior of the armored truck was lined with shelves holding innumerable bags of mainly quarters, it looked like. He lifted one, and it was as heavy as he'd been told. The police officer stuck his clipboard in his belt and went to work, handing them out to the loading dock, where the guard set them on a two-wheel handtruck. Trust the sarge to stick him with this.

Yankevich met the Lieutenant at the media entrance. Both walked over to the truck in question. The Lieutenant looked inside. "A big box with 'Sony' written on it ... wait a minute. Says it's a commercial videotape machine."

Sergeant Yankevich filled his boss in on what Dawkins had told him. "It's probably nothing, but-"

"Yeah-but. Let me find the ABC guy. I'm also going to call the bomb squad. Stay here and keep an eye on the thing."

"I have a Slim Jim in my car. If you want I can get in easy enough." Every cop knows how to break into cars.

"I don't think so. We'll let the bomb guys think it over-besides, it's probably just what it looks like. If they came down to replace a broke tapedeck-well, maybe the broken one was fixed and they decided they didn't need it."

"Okay, Lieutenant." Yankevich walked inside to get another cup of coffee to keep warm, then returned to the out-of-doors he loved so much. The sun was setting behind the Rockies, and even in zero weather with a bitter wind, it was always something beautiful to watch. The police sergeant walked past the network uplink vans to watch the glowing orange ball dip through one of the blowing snow clouds. Some things were better than football. When the last edge of the sun dipped below the ridgeline, he turned back, deciding to take another look at the box inside the truck. He would not make it.

35.

THREE SHAKES.

The timer just outside the bombcase reached 5:00:00, and things began to happen.

First, high-voltage capacitors began to charge, and small pyrotechnics adjacent to the tritium reservoirs at both ends of the bomb fired. These drove pistons, forcing the tritium down narrow metal tubes. One tube led into the Primary, the other into the Secondary. There was no hurry here, and the objective was to mix the various collections of lithium-deuteride with the fusion-friendly tritium atoms. Elapsed time was ten seconds.

At 5:00:10, the timer sent out a second signal.

Time Zero.

The capacitors discharged, sending an impulse down a wire into a divider network. The length of the first wire was 50 centimeters. This took one and two-thirds nanoseconds. The impulse entered a dividing network using krytron switches-each of them a small and exceedingly fast device using self-ionized and radioactive krypton gas to time its discharges with remarkable precision. Using pulse-compression to build their amperage, the dividing network split the impulse into seventy different wires, each of which was exactly one meter in length. The relayed impulses required three-tenths of a shake (three nanoseconds) to transit this distance. The wires all had to be of the same length, of course, because all of the seventy explosive blocks were supposed to detonate at the same instant. With the krytrons and the simple expedient of cutting each wire to the same length, this was easy to achieve.

The impulses reached the detonators simultaneously. Each explosive block had three separate detonators, and none of them failed to function. The detonators were small wire filaments, sufficiently thin that the arriving current exploded each. The impulse was transferred into the explosive blocks, and the physical detonation process began 4.4 nanoseconds after the signal was transmitted by the timer. The result was not an explosion, but an im implosion, since the explosive force was mainly focused inward.

The high-explosives blocks were actually very sophisticated laminates of two materials, each laced with dust from light and heavy metals. The outer layer in each case was a relatively slow explosive with a detonation speed of just over seven thousand meters per second. The explosive wave in each expanded radially from the detonator, quickly reaching the edge of the block. Since the blocks were detonated from the outside-in, the blast front traveled inward through the blocks. The border between the slow and fast explosives contained bubbles-called voids-which began to change the shockwave from spherical-shaped to a planar, or flat wave, which was focused again to match exactly its metallic target, called "drivers."

The "driver" in each case was a piece of carefully shaped tungsten-rhenium. These were hit by a force wave traveling at more than nine thousand eight hundred meters (six miles) per second. Inside the tungsten-rhenium was a one-centimeter layer of beryllium. Beyond that was a one-millimeter thickness of uranium 235, which though thin weighed almost as much as the far thicker beryllium. The entire metallic ma.s.s was driving across a vacuum, and since the explosion was focused on a central point, the actual closing speed of opposite segments of the bomb was 18,600 meters (or 11.5 miles) per second.

The central aiming point of the explosives and the metallic projectiles was a ten-kilogram (22-pounds) ma.s.s of radioactive plutonium 239. It was shaped like a gla.s.s tumbler whose top had been bent outwards and down toward the bottom, creating two parallel walls of metal. Ordinarily denser than lead, the plutonium was compressed further by the million-atmospheres pressure of the implosion. This had to be done very quickly. The plutonium 239 ma.s.s also included a small but troublesome quant.i.ty of plutonium 240, which was even less stable and p.r.o.ne to pre-ignition. The outer and inner surfaces were slammed together and driven in turn toward the geometric center of the weapon.

The final external act came from a device called a "zipper." Operating off the third signal from the still-intact electronic timer, the zipper was a miniature particle accelerator, a very compact minicyclotron that looked remarkably like a hand-held hair-dryer. This fired deuterium atoms at a beryllium target. Neutrons traveling ten percent of the speed of light were generated in vast numbers and traveled down a metal tube into the center of the Primary, called the Pit. The neutrons were timed to arrive just as the plutonium reached half of its peak density.

Ordinarily a material weighing roughly twice an equivalent ma.s.s of lead, the plutonium was already ten times denser than that and still accelerating inward. The bombardment of neutrons entered a ma.s.s of still-compressing plutonium.

Fission.

The plutonium atom has an atomic weight of 239, that being the combined number of neutrons and protons in the atomic nucleus. What began happened at literally millions of places at once, but each event was precisely the same. An invading "slow" neutron pa.s.sed close enough to a plutonium nucleus to fall under the Strong Nuclear Force that holds atomic nuclei together. The neutron was pulled into the atom's center, changing the energy state of the host nucleus and kicking it into an unstable state. The once symmetrical atomic nucleus began gyrating wildly and was torn apart by force fluctuations. In most cases a neutron or proton disappeared entirely, converted to energy in homage to Einstein's law E = MC2. The energy that resulted from the disappearance of the particles was released in the form of gamma- and X-radiation, or any of thirty or so other but less important routes. Finally, the atomic nucleus released two or three additional neutrons. This was the important part. The process that had required only one neutron to start released two or three more, each traveling at over ten percent of the speed of light-20,000 miles per second-through s.p.a.ce occupied by a plutonium ma.s.s two hundred times the density of water. The majority of the newly liberated atomic particles found targets to hit.

A chain reaction merely means that the process builds on itself, that the energy released is sufficient to continue the process without outside a.s.sistance. The fission of the plutonium proceeded in steps called "doublings." The energy liberated by each step was double that of the preceding one, and that of each subsequent step was doubled again. What began as a trivial amount of energy and just a handful of freed particles doubled and redoubled, and the interval between steps was measured in fractions of nanoseconds. The rate of increase-that is, the acceleration of the chain reaction-is called the "Alpha," and is the most important variable in the fission process. An Alpha of 1,000 means that the number of doublings per microsecond is a vast number, 21000-the number 2 multiplied by itself one thousand thousand times. At peak fission-between 2 times. At peak fission-between 250 and 2 and 253-the bomb would be generating 10 billion billion watts of power, one hundred thousand times the electrical-generating capacity of the entire world. Fromm had designed the bomb to do just that-and that was only ten percent of the weapon's total designed output. The Secondary had yet to be affected. No part of it had yet been touched by the forces only a few inches away.

But the fission process had scarcely begun.

Some of the gamma rays, traveling at the speed of light, were outside the bombcase while the plutonium was still being compressed by the explosives. Even nuclear reactions take time. Other gamma rays started to impact on the Secondary. The majority of the gammas streaked through a gas cloud that only a few microseconds earlier had been the chemical explosive blocks, heating it far beyond the temperatures chemicals alone could achieve. Made up of very light atoms like carbon and oxygen, this cloud emitted a vast quant.i.ty of low-frequency "soft" X-rays. To this point, the device was functioning exactly as Fromm and Ghosn had planned.

The fission process was seven nanoseconds-0.7 shakes-old when something went wrong.

Radiation from the fissioning plutonium blazed in on the tritium-impregnated lithium-deuteride that occupied the geometric center of the Pit. The reason Manfred Fromm had left the tritium extraction to last lay in his basic engineer's conservatism. Tritium is an unstable gas, with a half-life of 12.3 years, meaning that a quant.i.ty of pure tritium will, after that time, be composed half of tritium and half of 3 3He. Called "helium-three," 3 3He is a form of that second-lightest of elements whose nucleus lacks an extra neutron, and craves another. By filtering the gas through a thin block of palladium, the 3 3He would have been easily separated out, but Ghosn hadn't known about that. As a result, more than a fifth of the tritium was the wrong material. It could hardly have been a worse material.

The intense bombardment from the adjacent fission reaction seared the lithium compound. Normally a material half the density of salt, it was compressed to a metallic state that exceeded the density of earth's core. What began was actually a fusion reaction, though a small one, releasing huge quant.i.ties of new neutrons, and also changing many of the lithium atoms into more tritium, which broke down-"fused"-under the intense pressure to release yet more neutrons. The additional neutrons generated were supposed to invade the plutonium ma.s.s, boosting the alpha and causing at least a doubling of the weapon's unboosted fission yield. This had been the first method of increasing the power of the second-generation nuclear weapons. But the presence of 3 3He poisoned the reaction, trapping nearly a quarter of the high-energy neutrons in uselessly stable helium atoms.

For several more nanoseconds, this did not matter. The plutonium was still increasing its reaction rate, still doubling, still increasing its Alpha at a rate only expressable numerically.

Energy was now flooding into the Secondary. The metallically coated straws flashed to plasma, pressing inward on the Secondary. Radiant energy in quant.i.ties not found on the surface of the sun vaporized but also reflected off elliptical surfaces, delivering yet more energy to the Secondary a.s.sembly, called the Holraum. Holraum. The plasma from the immolated straws pounded inward toward the second reservoir of lithium compounds. The dense uranium 238 fins just outside the Secondary pit also flashed to dense plasma, driving inward through the vacuum, then striking and compressing the tubular containment of more The plasma from the immolated straws pounded inward toward the second reservoir of lithium compounds. The dense uranium 238 fins just outside the Secondary pit also flashed to dense plasma, driving inward through the vacuum, then striking and compressing the tubular containment of more 238 238U around the central container which held the largest quant.i.ty of lithium-deuteride/tritium. The forces were immense, and the structure was pounded with a degree of pressure greater than that of a healthy stellar core.

But not enough.

The Primary's reaction had already slackened. Starved of neutrons by the presence of the 3 3He poison, the bomb's explosive force began to blow apart the reaction ma.s.s as soon as the physical forces reached their balance. The chain reaction reached a moment of stability, at last unable to sustain its geometric rate of growth; the last two chain-reaction doublings were lost entirely, and what should have been a total Primary yield of seventy thousand tons of TNT was halved, halved again, and in fact ended with a total yield of eleven thousand two hundred tons of high explosive.

Fromm's design had been as perfect as the circ.u.mstances and materials allowed. An equivalent weapon less than a quarter the size was possible, but his specifications were more than adequate. A ma.s.sive safety factor in the energy budget had been planned for. Even a thirty-kiloton yield would have been enough to ignite the "spark plug" in the Secondary to start a ma.s.sive fusion "burn," but thirty-KT was not reached. The bomb was technically called a "fizzle."

But it was a fizzle equivalent to eleven thousand two hundred tons of TNT. That could be represented by a cube of high explosives seventy-five feet high, seventy-five feet long, and seventy-five feet thick, as much as could be carried by nearly four hundred trucks, or one medium-sized s.h.i.+p-but conventional explosives could never have detonated with anything approaching this deadly efficiency; in fact, a conventional explosion of this magnitude is a practical impossibility. For all that, it was still a fizzle.

As yet no perceptible physical effects had even left the bombcase, much less the truck. The steel case remained largely intact, though that would rapidly change. Gamma radiation had already escaped, along with X-rays, but these were invisible. Visible light had not yet emerged from the plasma cloud that had only three "shakes" before been over a thousand pounds of exquisitely designed hardware ... and yet, everything that was to happen had already taken place. All that remained now was the distribution of the energy already released by natural laws which neither knew nor cared about the purposes of their manipulators.

36.

WEAPONS EFFECTS.

Sergeant Ed Yankevich should have been the first to notice what was happening. His eyes were on the van, and he was walking in that direction, scarcely forty feet away, but the human nervous system works in milliseconds and no faster.

The fizzle had just ended when the first radiation reached the police officer. These were gamma rays, which are actually photons, the same stuff that light waves are made of, but far more energetic. They were already attacking the body of the truck as well, causing the sheet steel to fluoresce like neon. Immediately behind the gammas were X-rays, also composed of photons but less energetic. The difference was lost on Yankevich, who would be the first to die. The intense radiation was most readily absorbed by his bones, which rapidly heated to incandescence, while at the same time the neurons of his brain were simultaneously excited as though each had become a flash bulb. In fact, Sergeant Yankevich was unable to notice a thing. He literally disintegrated, exploded from within by the tiny fraction of energy his body was able to absorb as the rest raced through him. But the gammas and X-rays were heading in all possible directions at the speed of light, and their next effect was one no one had antic.i.p.ated.

Adjacent to the van, whose body was now being reduced to molecular bits of metal, was ABC's "A" satellite unit. Inside were several people who would have no more time to sense their fate than Sergeant Yankevich. The same was true of the elaborate and expensive electrical equipment in the van. But at the rear of this vehicle, pointing south and upward, was a large parabolic-dish antenna, not unlike the kind used for radar. In the center of this, like the stamen of a flower, was the wave guide, essentially a metal tube with a square cross-section whose inside dimensions roughly approximated the wavelength of the signal it was now broadcasting to a satellite 22,600 miles over the equator.

The wave-guide of the A unit, and soon thereafter each of the eleven trucks lined up west of it, was struck by the gammas and X-rays. In the process, electrons were blasted off the atoms of the metal-in some cases the guides were lined with gold plate, which accentuated the process-which gave up their energy at once in the form of photons. These photons formed waves whose frequency was roughly that of the satellite uplink transmitters. There was one difference: the uplink trucks were in no case transmitting as much as one thousand watts of radio-frequency-RF-energy, and in most cases far less than that. The energy transfer from the A unit's wave guide, however, released nearly a million watts of energy in one brief, o.r.g.a.s.mic pulse that ended in less than a microsecond as the antenna and the a.s.sociated truck were also vaporized by the searing energy front. Next to go was the ABC "B" unit, then TWI. NHK, which was sending the Super Bowl to j.a.pan, was the fourth van in the line. There were eight more. All were destroyed. This process took approximately fifteen "shakes." The satellites to which they transmitted were a long distance away. It would take the energy roughly an eighth of a second to span the distance, a relative eternity.

Next to emerge from the explosion-the truck was now part of it-was light and heat energy. The first blast of light escaped just before the expanding fireball blocked it. The second installment escaped soon thereafter, radiating in all directions. This generated the two-phase pulse which is characteristic of nuclear detonations.

The next energy effect was blast. This was actually a secondary effect. The air absorbed much of the soft X-rays and was burned into an opaque ma.s.s which stopped further electromagnetic radiation, transforming it into mechanical energy that expanded at several times the speed of sound, but before that energy had a chance to damage anything, more distant events were already under way.

The primary ABC video link was actually by fiber-optic cable-a high-quality landline-but the cable ran through the A van and was cut even before the stadium itself was damaged. The backup link was through the Telstar 301 satellite, and the Pacific Coast was serviced by Telstar 302. ABC used the Net-1 and Net-2 primary links on each bird. Also using Telstar 301 was Trans World International, which represented the NFL's worldwide rights and distributed the game to most of Europe, plus Israel and Egypt. TWI sent the same video signal to all its European clients, and also provided facilities for separate audio uplinks in the various European languages, which usually meant more than one audio link per country. Spain, for example, accounted for five dialects, each of which had its own audio sideband-channel. NHK, broadcasting to j.a.pan, used both the JISO-F2R satellite and its regular full-time link, Westar 4, which was owned and operated by Hughes Aeros.p.a.ce. Italian TV used Major Path 1 of the Teleglobe satellite (owned by the Intelsat conglomerate) to feed its own viewers, plus those in Dubai and whatever Israelis didn't like the play-by-play through TWI and Telstar. Teleglobe's Major Path 2 was delegated to serve most of South America. Also present, either right at the stadium or a short distance away, were CNN, ABC's own news division, CBS Newsnet, and ESPN. Local Denver stations had their own satellite trucks on the scene, their uses mainly rented to outsiders.

There was a total of thirty-seven active satellite uplink trucks using either microwave or Ku-band transmitters to generate a total of 48 active video, and 168 active audio signals, all feeding over a billion sports fans in seventy-one countries when the gamma and X-ray flux struck. In most cases the impact generated a signal in the wave guides, but in six trucks, the traveling-wave tubes themselves were illuminated first and put out a gigantic pulse on exactly the proper frequencies. Even that was beside the point, however. Resonances and otherwise inconsequential irregularities within the wave guides meant that wide segments of the satellite frequencies were all covered with the noise-spike. All but two of the communications satellites...o...b..ting over the Western Hemisphere were being worked by the TV crews at Denver. What happened to them is expressed simply. Their sensitive antennas were designed to receive billionths of watts. Instead, they were suddenly bombarded with between one and ten thousand times that on numerous separate channels. That surge overloaded an equal number of the front-end amplifiers inside the satellites. The computer software running the satellites took note of this and began to activate isolation switches to protect the sensitive equipment from the spike. Had the incident affected merely one such receiver, service would have been restored at once and nothing further would have happened, but commercial communications satellites are immensely expensive artifacts, costing hundreds of millions of dollars to build and hundreds of millions more to launch into orbit. When more than five amplifiers recorded spikes, the software automatically began shutting circuits down, lest possibly serious damage to the entire satellite result. When twenty or more were affected, the software took the further step of deactivating all onboard circuits, and next firing off an emergency signal to its command ground station to say that something very serious had just happened. The safety software on the satellites were all customized variations of a single, very conservative program designed to safeguard billions of dollars' worth of nearly irreplaceable a.s.sets. In a brief flicker of time, a sizable fraction of the world's satellite communications dropped out of existence. Cable television and telecommunications systems all ceased, even before the technicians who managed their operations knew that something had gone disastrously wrong.

Pete Dawkins was resting for a moment. He thought of it as protecting the armored truck. The Wells Fargo guard was off delivering another few hundred pounds of quarters, and the police officer was sitting, his back against the shelves full of coin bags, listening to his radio. The Chargers were coming up to the line for a third-and-five at the Vikings' forty-seven. At that moment, the darkening sky outside turned incandescent yellow, then red-not the friendly, gentle red of a sunset, but a searing violet that was far brighter than that color could possibly have been. His mind barely had time to register that fact when it was a.s.saulted by a million other things at once. The earth rose beneath him. The armored car was tossed up and sideways like a toy kicked by a child. The open rear door was slammed shut as if struck by a cannon. The body of the truck sheltered him from the shockwave-as did the body of the stadium, though Dawkins had not the time to realize it. Even so, he was nearly blinded by the flash that did reach him, and deafened by the overpressure wave that swept across him like the crus.h.i.+ng hand of a giant. Had Dawkins been less disoriented, he might have thought earthquake, earthquake, but even that idea did not occur to him. Survival did. The noise had not stopped, nor had the shaking, when he realized that he was trapped inside a vehicle whose fuel tank contained perhaps as much as fifty gallons of gasoline. He blinked his eyes clear and started crawling out the shattered winds.h.i.+eld toward the brightest spot he could see. He did not notice that the backs of his hands looked worse than any sunburn he'd ever had. He did not realize that he could not hear a thing. All he cared about was getting to the light. but even that idea did not occur to him. Survival did. The noise had not stopped, nor had the shaking, when he realized that he was trapped inside a vehicle whose fuel tank contained perhaps as much as fifty gallons of gasoline. He blinked his eyes clear and started crawling out the shattered winds.h.i.+eld toward the brightest spot he could see. He did not notice that the backs of his hands looked worse than any sunburn he'd ever had. He did not realize that he could not hear a thing. All he cared about was getting to the light.

Outside Moscow, in a bunker under sixty meters of concrete, is the national headquarters of Voyska PVO, Voyska PVO, the Soviet air-defense service. A new facility, it was designed much like its Western counterparts in the form of a theater, since this configuration allowed the maximum number of people to see the data displayed on the large wall that was required for the map displays which were needed for their duties. It was 03:00:13 local time, according to the digital clock over the display, 00:00:13 Zulu (Greenwich Mean) Time, 19:00:13 in Was.h.i.+ngton, D.C. the Soviet air-defense service. A new facility, it was designed much like its Western counterparts in the form of a theater, since this configuration allowed the maximum number of people to see the data displayed on the large wall that was required for the map displays which were needed for their duties. It was 03:00:13 local time, according to the digital clock over the display, 00:00:13 Zulu (Greenwich Mean) Time, 19:00:13 in Was.h.i.+ngton, D.C.

On duty was Lieutenant General Ivan Grigoriyevich Kuropatkin, a former-he would have said "current"-fighter pilot, now fifty-one years of age. The third-ranking man at this post, he was taking his place in the normal duty rotation. Though as a very senior officer he could have opted for more convenient hours, the new Soviet military was to be founded on professionalism, and professional officers, he thought, led by example. Arrayed around him were his usual battle staff, composed of colonels, majors, plus a leavening of captains and lieutenants for menial work.

The job of Voyska PVO Voyska PVO was to defend the Soviet Union against attack. In the missile age and in the absence of an effective defense against ballistic missiles-both sides were still working on that-his duties were more to warn than defend. Kuropatkin didn't like that, but neither could he change it. In geosynchronous...o...b..t over the coast of Peru was a pair of satellites, called Eagle-I and -II, whose task it was to watch the United States and spot a missile launch just as soon as the missiles left their silos. The same satellites could also spot an SLBM launch from the Gulf of Alaska, though their coverage that far north was somewhat dependent on weather which, at the moment, was vile. The display from the orbiting Eagles was in the infrared spectrum, which mainly measured heat. The display was presented as the camera perceived it, without borderlines or other computer-generated data which, the Russian designers thought, simply cluttered the display unnecessarily. Kuropatkin was not looking up, but rather at a junior officer who seemed to be doing a calculation of some sort, when something caught his eye. His gaze s.h.i.+fted automatically, entirely without conscious thought, and it took fully a second for him to realize why. was to defend the Soviet Union against attack. In the missile age and in the absence of an effective defense against ballistic missiles-both sides were still working on that-his duties were more to warn than defend. Kuropatkin didn't like that, but neither could he change it. In geosynchronous...o...b..t over the coast of Peru was a pair of satellites, called Eagle-I and -II, whose task it was to watch the United States and spot a missile launch just as soon as the missiles left their silos. The same satellites could also spot an SLBM launch from the Gulf of Alaska, though their coverage that far north was somewhat dependent on weather which, at the moment, was vile. The display from the orbiting Eagles was in the infrared spectrum, which mainly measured heat. The display was presented as the camera perceived it, without borderlines or other computer-generated data which, the Russian designers thought, simply cluttered the display unnecessarily. Kuropatkin was not looking up, but rather at a junior officer who seemed to be doing a calculation of some sort, when something caught his eye. His gaze s.h.i.+fted automatically, entirely without conscious thought, and it took fully a second for him to realize why.

There was a white dot in the center of the display.

"Nichevo ... " He shook that off at once. "Isolate and zoom in!" he ordered loudly. The Colonel working the controls was sitting right next to him, and was already doing just that. ... " He shook that off at once. "Isolate and zoom in!" he ordered loudly. The Colonel working the controls was sitting right next to him, and was already doing just that.

"Central United States, General. Double-flash thermal signature, that is a probable nuclear detonation," the Colonel said mechanically, his professional judgment overpowering his intellectual denial.

"Coordinates."

"Working, General." The distance from the Center to the satellite ensured a delay in getting things to happen. By the time the satellite's telescopic lens started moving in, the thermal signature from the fireball was expanding rapidly. Kuropatkin's immediate impression was that this could not possibly be a mistake, and as hot as that image was, what materialized in the pit of his stomach was a fist of ice.

"Central U.S., looks like the city of Densva. Densva. " "

"Denver, what the h.e.l.l's in Denver?" Kuropatkin demanded. "Find out."

"Yes, General."

Kuropatkin was already reaching for a telephone. This line was a direct link to the Ministry of Defense and also the residence of the Soviet President. He spoke quickly but clearly.

"Attention: This is Lieutenant General Kuropatkin at PVO Moscow Center. We have just registered a nuclear detonation in the United States. I repeat: we have just registered a nuclear detonation in the United States."

One voice on the line swore. That would be President Narmonov's watch staff.

The other voice, that of the Defense Ministry's senior watch officer, was more reasoned. "How sure are you of this?"

"Double-flash signature," Kuropatkin replied, astounded at his own coolness. "I'm watching the fireball expansion now. This is a nuclear event. I will call in more data as soon as I have it-what?" he asked a junior officer.

"General, Eagle-II just took one h.e.l.l of an energy spike, four of the SHF links just shut down momentarily, and another is gone completely," a major said, leaning over the General's desk.

"What happened, what was it?"

"I don't know."

"Find out."

The picture went blank just as San Diego was coming up for their third-and-five at the forty-seven. Fowler finished off his fourth beer of the afternoon and set the gla.s.s down in annoyance. d.a.m.ned TV people. Someone probably tripped over a plug, and he'd miss a play or two in what looked like one h.e.l.l of a game. He ought to have gone to this one despite the advice of the Secret Service. He glanced over to see what Elizabeth was watching, but her screen had suddenly gone blank as well. Had one of the Marines driven over the cable with a snowplow ? Good help certainly was hard to come by, the President grumped. But no, that wasn't right. The ABC affiliate-Bal-timore's Channel 13, WJZ-put up its "Network Difficulty-Please Stand By" graphic, whereas Elizabeth's channel was just random noise now. How very odd. Like any male TV viewer, Fowler picked up the TV controller and changed channels. CNN was off the air, too, but the local Baltimore and Was.h.i.+ngton stations were not. He'd just started wondering what that meant when a phone started ringing. It had an unusually atonal, strident sound, and was one of the four kept on the lower shelf of the coffee table that sat right in front of his couch. He reached down for it before he realized which one it was, and that delayed understanding caused his skin to go cold. It was the red phone, the one from North American Aeros.p.a.ce Defense Command at Cheyenne Mountain, Colorado.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Sum of all Fears Part 79 summary

You're reading The Sum of all Fears. This manga has been translated by Updating. Author(s): Tom Clancy. Already has 770 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com