Getting Gold: A Practical Treatise for Prospectors, Miners and Students - BestLightNovel.com
You’re reading novel Getting Gold: A Practical Treatise for Prospectors, Miners and Students Part 6 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
At a mine of which I was managing director the lode was almost entirely composed of sulphide of iron, carbonate of lime or calcspar, with a little silica. In this case it has been found best to crush without mercury, then run the pulp into pans, where it is concentrated. The concentrates are calcined in a common reverberatory furnace, and afterwards amalgamated with mercury in a special pan, the results as to the proportion of gold extracted being very satisfactory; but it does not therefore follow that this process would be the most suitable in another mine where the lode stuff, though in some respects similar, yet had points of difference.
I was lately consulted with respect to the treatment of a pyritic ore in a very promising mine, but could not recommend the above treatment, because though the pyrites in the gangue was similar, the bulk of the lode consisted of silica, consequently there would be a great waste of power in triturating the whole of the stuff to what, with regard to much of it, would be an unnecessary degree of fineness. I am of opinion that in cases such as this, where it is not intended to adopt the chlorination or cyanogen process, it will be found most economical to crush to a coa.r.s.e gauge, concentrate, calcine the concentrates, and finally amalgamate in some suitable amalgamator.
Probably for this mode of treatment Krom rolls would be found more effective reducing agents than stampers, as with them the bulk of the ore can be broken to any required gauge and there would consequently be less loss in "slimes."
The great art in effective battery work is to crush your stuff to the required fineness only, and then to provide that each particle is brought into contact with the mercury either in box, trough, plate, or pan. To do this the flow of water must be carefully regulated; neither so much must be used as to carry the stuff off too quickly nor so little as to cause the troughs and plates to choke. In cold weather the water may be warmed by pa.s.sing the feed-pipe through a tank into which the steam from the engine exhausts, and this will be found to keep the mercury bright and lively. But be careful no engine oil or grease mingles with the water, as grease on the copper tables will absolutely prevent amalgamation.
The first point, then, is to crush the gangue effectively, the degree of fineness being regulated by the fineness of the gold itself. This being done, then comes the question of saving the gold. If the quartz be clean, and the gold unmixed with base metal, the difficulty is small.
All that is required is to ensure that each particle of the Royal metal shall be brought into contact with the mercury. The main object is to arrest the gold at the earliest possible stage; therefore, if you are treating clean stone containing free gold, either coa.r.s.e or fine, I advise the use of mercury in the boxes, for the reason that a considerable proportion of the gold will be caught thereby, and settling to the bottom, or adhering to amalgamated plates in the boxes, where such are used, will not be afterwards affected by the crus.h.i.+ng action, which might otherwise break up, or "flour," the mercury. On the whole, I rather favour the use of mercury in the box at any time, unless the ore is very refractory--that is, contains too great a proportion of base metals, particularly sulphides of iron, a.r.s.enic, etc., when the result will not be satisfactory, but may entail great loss by the escape of floured mercury carrying with it particles of gold. Here only educated intelligence, with experience, will a.s.sist the battery manager to adopt the right system.
The crushed stuff--generally termed the "pulp"--pa.s.ses from the boxes through the "screens" or "gratings," and so on to the "tables"--i.e., sheets of copper amalgamated on the upper surface with mercury, and sometimes electroplated with silver and afterwards treated with mercury.
Unless the quartz is very clean, and, consequently light, I am opposed to the form of stamper box with mercury troughs cast in the "lip," nor do I think that a trough under the lip is a good arrangement, as it usually gets so choked and covered with the heavy clinging base metals as to make it almost impossible for the gold to come in contact with the mercury. It will be found better where the gold is fine, or the gangue contains much base metal, to run the pulp from the lip of the battery into a "distributor."
The distributor is a wooden box the full width of the "mortar," having a perforated iron bottom set some three to four inches above the first copper plate, which should come up under the lip. The effect of this arrangement is that the pulp is dashed on the plate by the falling water, and the gold at once coming in contact with the mercury begins to acc.u.mulate and attract that which follows, till the amalgam becomes piled in little crater-shaped mounds, and thus 75 per cent of the gold is saved on the top plate.
I have tried a further adaptation of this process when treating ores containing a large percentage of iron oxide, where the bulk of the gold is impalpably fine, and contained in the "gossan." At the end of the blanket table, or at any point where the crushed stuff last pa.s.ses before going to the "tailings heap," or "sludge pit," a "saver" is placed. The saver is a strong box about 15 in. square by 3 ft. high, one side of which is removable, but must fit tight. Nine slots are cut inside at 4 in. apart, and into these are fitted nine square perforated copper plates, having about eighty to a hundred 1/4 in. holes in each; the perforations should not come opposite each other. These plates are to be amalgamated on both sides with mercury, in which a very little sodium has been placed (if acid ores are being treated, zinc should be employed in place of sodium, and to prevent the plates becoming bare, if the stuff is very poor, thick zinc amalgam may be used with good effect; but in that case discontinue the sodium, and occasionally, if required, say once or twice in the day, mix an ounce of sulphuric acid in a quart of water and slowly pour it into the launder above the saver).
Underneath the "saver" you require a few riffles, or troughs, to catch any waste mercury, but if not overfed there should be no waste. This simple appliance, which is automatic and requires little attention, will sometimes arrest a considerable quant.i.ty of gold.
We now come to the subsidiary processes of battery work, the "cleaning"
of plates, and "scaling" same when it is desired to get all the gold off them, the cleaning and retorting of amalgam, and of the mercury, smelting gold, etc.
Plates should be tenderly treated, kept as smooth as possible, and when cleaning up after crus.h.i.+ng, in your own battery, the amalgam--except, say, at half-yearly intervals--should be removed with a rubber only; the rubber is simply a square of black indiarubber or soft pine wood.
When crus.h.i.+ng rich ore, and you want to get nearly all the gold off your plates, the sc.r.a.per may be resorted to. This is usually made by the mine blacksmith from an old flat file which is cut in half, the top turned over, beaten out to a sharp blade, and kept sharp by touching it up on the grinding-stone. This, if carefully used, will remove the bulk of the amalgam without injury to the plate.
Various methods of "scaling" plates will be found among "Rules of Thumb."
Where base metals are present in the lode stuff frequent retortings of the mercury, say not less than once a month, will be found to have a good effect in keeping it pure and active. For this purpose, and in order to prevent stoppage of the machinery, a double quant.i.ty is necessary, so that half may be used alternately. Less care is required in retorting the mercury than in treating the amalgam, as the object in the one case is more to cleanse the metal of impurities than to save gold, which will for the most part have been extracted by squeezing through the chamois leather or calico. A good strong heat may therefore at once be applied to the retort and continued, the effect being to oxidise the a.r.s.enic, antimony, lead, etc., which, in the form of oxides, will not again amalgamate with the mercury, but will either lie on its surface under the water, into which the nozzle of the retort is inserted, or will float away on the surface of the water. I have also found that covering the top of the mercury with a few inches of broken charcoal when retorting has an excellent purifying effect.
In retorting amalgam, much care and attention is required.
First, never fill the retort too full, give plenty of room for expansion; for, when the heat is applied, the amalgam will rise like dough in an oven, and may be forced into the discharge pipe, the consequence being a loss of amalgam or the possible bursting of the retort. Next, be careful in applying the heat, which should be done gradually, commencing at the top. This is essential to prevent waste and to turn out a good-looking cake of gold, which all battery managers like to do, even if they purpose smelting into bars.
Sometimes special difficulties crop up in the process of separating the gold from the amalgam. At the first "cleaning up" on the Frasers Mine at Southern Cross, West Australia, great consternation was excited by the appearance of the retorted gold, which, as an old miner graphically put it, was "as black as the hind leg of a crow," and utterly unfit for smelting, owing to the presence of base metals. Some time after this I was largely interested in the Blackborne mine in the same district when a similar trouble arose. This I succeeded in surmounting, but a still more serious one was too much for me--i.e., the absence of payable gold in the stone. I give here an extract from the _Australian Mining Standard_, of December 9th, 1893, with reference to the mode of cleaning the amalgam which I adopted.
NEW METHOD OF SEPARATING GOLD FROM IMPURE AMALGAM.
I had submitted to me lately a sample of amalgam from a mine in West Australia which amalgam had proved a complete puzzle to the manager and amalgamator. The Mint returns showed a very large proportion of impurity, even in the smelted gold. When retorted only, the Mint authorities refused to take it after they had treated two cakes, one of 119 oz., which yielded only 35 oz. 5 dwt. standard gold, and one of 140 oz., which gave 41 oz. 10 dwt. The gold smelted on the mine was nearly as bad proportionately. Thus, 128 oz. smelted down at the Mint to 87 oz.
8 dwt. and 109 oz. to 55 oz. 10 dwt. The impurity was princ.i.p.ally iron, a most unusual thing in my experience, and was due to two causes revealed by a.s.say of the ore and a.n.a.lysis of the mine water, viz., an excess of a.r.s.enate of iron in the stone, and the presence in large proportions of mineral salts, princ.i.p.ally chloride of Calcium CaCl., sodium NaCl, and magnesium MgCl2, in the mine water used in the battery.
The exact a.n.a.lysis of the water was as follows:--
Carbonate of Iron FeCO3 2.76 grains per gallon Carbonate of Calcium CaCO3 7.61 grains per gallon Sulphate of Calcium CaSO4 81.71 grains per gallon Chloride of Calcium CaCl2 2797.84 grains per gallon Chloride of Magnesium MgCl2 610.13 grains per gallon Chloride of Sodium or Common Salt NaCl 5072.65 grains per gallon
Total solid matter 8572.70 = 19.5 oz. to the gallon.
It will be seen, then, that this water is nearly four times more salt that that of the sea. The effect of using a water of this character, as I have previously found, is to cause the amalgamation of considerable quant.i.ties of iron with the gold as in this case.
I received 10 oz. of amalgam, and having found what const.i.tuted its impurities proceeded to experiment as to its treatment. When retorted on the mine it was turned out in a black cake so impure as almost to make it impossible to smelt properly. I found the same result on first retorting, and after a number of experiments which need not be recapitulated though some were fairly effective, I hit on the following method, which was found to be most successful and will probably be so found in other localities where similarly unfavourable conditions prevail.
I took a small ball of amalgam, placed it in a double fold of new fine grained calico, and after soaking in hot water put it under a powerful press. The weight of the ball before pressing was 1583 gr. From this 383 gr. of mercury was expressed and five-eighths of a grain of gold was retorted from this expressed mercury. The residue, in the form of a dark, grey, and very friable cake, was powdered up between the fingers and retorted, when it became a brown powder; it was afterwards calcined on a flat sheet in the open air; result, 510 gr. of russet-coloured powder. Smelted with borax, the iron oxide readily separated with the slag; result, 311 gr. gold 871-1000 fine; a second smelting brought this up to 914-1000 fine. Proportion of smelted gold to amalgam, one-fifth.
The princ.i.p.al point about this mode of treatment is the squeezing out of the mercury, whereby the amalgam goes into the retort in the form of powder, thus preventing the slagging of the iron and enclosure of the gold. The second point of importance is thorough calcining before smelting.
Of course it would be practicable, if desired, to treat the powder with hydrochloric acid, and thus remove all the iron, but in a large way this would be too expensive, and my laboratory treatment, though necessarily on a small scale, was intended to be on a practical basis.
The amalgam at this mine was in this way afterwards treated with great success.
For the information of readers who do not understand the chemical symbols it may be said that
FeCO3 is carbonate of iron; CaCO3 is carbonate of calcium; CaSO4 is sulphate of calcium; CaCl2 is chloride of calcium; MgCl2 is chloride of magnesium; NaCl is chloride of sodium, or common salt.
CHAPTER VII
GOLD EXTRACTION--SECONDARY PROCESSES AND LIXIVIATION
Before any plan is adopted for treating the ore in a new mine the management should very seriously and carefully consider the whole circ.u.mstances of the case, taking into account the quant.i.ty and quality of the lode stuff to be operated on, and ascertain by a.n.a.lysis what are its component parts, for, as before stated, the treatment which will yield most satisfactory results with a certain cla.s.s of gangue on one mine will sometimes, even when the material is apparently similar, prove a disastrous failure in another. Some time since I was glad to note that the manager of a prominent mine strongly discountenanced the purchase of any extracting plant until he was fully satisfied as to the character of the bulk of the ore he would have to treat. It would be well for the pockets of shareholders and the reputation of managers, if more of our mine superintendents followed this prudent and sensible course.
Having treated on gold extraction with mercury by amalgamated plates and their accessories, something must be said about secondary modes of saving in connection with the amalgamation process. The operations described hitherto have been the disintegration of the gold-bearing material and the extraction therefrom of the coa.r.s.er free gold. But it must be understood that most auriferous lode stuff contains a proportion of sulphides of various metals, wherein a part of the gold, usually in a very finely divided state, is enclosed, and on this gold the mercury has no influence. Also many lodes contain hard heavy ferric ores, such as t.i.tanic iron, tungstate of iron, and hemat.i.te, in which gold is held.
In others, again, are found considerable quant.i.ties of soft powdery iron oxide or "gossan," and compounds such as limonite, aluminous clay, etc., which, under the action of the crus.h.i.+ng mill become finely divided and float off in water as "slimes," carrying with them atoms of gold, often microscopically small. To save the gold in such matrixes as these is an operation which even the best of our mechanical appliances have not yet fully accomplished.
Where there is not too great a proportion of base metals on which the solvent will act, and when the material is rich enough in gold to pay for the extra cost of treatment, chlorination or cyanisation are the best modes of extraction yet practically adopted.
Presuming, however, that we are working by the amalgamation process, and have crushed our stone and obtained the free gold, the next requirement is an effective concentrator. Of these there are many before the public, and some do excellent work, but do not act equally well in all circ.u.mstances. The first and most primitive is the blanket table, previously mentioned; but it can hardly be said to be very effective, and requires constant attention and frequent changing and was.h.i.+ng of the strips of blanket.
Instead of blanket tables percussion tables are sometimes used, to which a jerking motion is given against the flow of the water and pulp, and by this means the heavier minerals are gathered towards the upper part of the table, and are from thence removed from time to time as they become concentrated.
I have seen this appliance doing fairly good work, but it is by no means a perfect concentrator.
Another form of "shaking table" is one in which the motion is given sideways, and this, whether amalgamated, or provided with small riffles, or covered with blanket, keeps the pulp lively and encourages the retention of the heavier particles, whether of gold or base metals containing gold. There has also been devised a rocking table the action of which is a.n.a.logous to that of the ordinary miner's cradle. This appliance, working somewhat slowly, swings on rockers from side to side, and is usually employed in mills where, owing to the complexity of the ore, difficulties have been met with in amalgamating the gold. Riffles are provided and even very fine gold is sometimes effectively recovered by their aid.
The Frue vanner will, as a rule, act well when the pulp is sufficiently fine. It is really a adaptation of an old and simple apparatus used in China and India for was.h.i.+ng gold dust from the sands of rivers. The original consisted of an endless band of strong cloth or closely woven matting, run on two horizontal rollers placed about seven feet apart, one being some inches lower than the other. The upper is caused to revolve by means of a handle. The cloth is thus dragged upwards against a small stream of water and sand fed to it by a second man, the first man not only turning the handle but giving a lateral motion to the band by means of a rope tied to one side.
Chinamen were working these forerunners of the Frue vanner forty years ago in Australia, and getting fair returns.
The Frue vanner is an endless indiarubber band drawn over an inclined table, to which a revolving and side motion is given by ingenious automatic mechanism, the pulp being automatically fed from the upper end, and the concentrates collected in a trough containing water in which the band is immersed in its pa.s.sage under the table; the lighter particles wash over the lower end. The only faults with the vanner are--first, it is rather slow; and secondly, though so ingenious it is just a little complicated in construction for the average non-scientific operative.
Of pan concentrators there is an enormous selection, the principle in most being similar--i.e., a revolving muller, which triturates the sand, so freeing the tiny golden particles and admitting of their contact with the mercury. The mistake with respect to most of these machines is the attempt to grind and amalgamate in one operation. Even when the stone under treatment contains no deleterious compounds the simple action of grinding the hard siliceous particles has a bad effect on the quicksilver, causing it to separate into small globules, which either oxidising or becoming coated with the impurities contained in the ore will not reunite, but wash away in the slimes and take with them a percentage of the gold. As a grinder and concentrator, and in some cases as an amalgamator, when used exclusively for either purpose, the Watson and Denny pan is effective; but although successfully used at one mine I know, the mode there adopted would, for reasons previously given, be very wasteful in many other mines.
There is considerable misconception, even among men with some practical knowledge, as to the proper function of these secondary saving appliances; and sometimes good machines are condemned because they will not perform work for which they were never intended. It cannot be too clearly realized that the correct order of procedure for extracting the gold held in combination with base metals is--first, reduction of the particles to a uniform gauge and careful concentration only; next, the dissipation, usually by simple calcination, of substances in the concentrates inimical to the thorough absorption of the gold by the mercury; and lastly, the amalgamation of the gold and mercury.
For general purposes, where the gangue has not been crushed too fine, I think the Duncan pan will usually be found effective in saving the concentrates. In theory it is an enlargement of the alluvial miner's tin dish, and the motion imparted to it is similar to the eccentric motion of that simple separator.
The calcining may be effectively carried out in an ordinary reverberatory furnace, the only skill required being to prevent over roasting and so slagging the concentrates; or not sufficiently calcining so as to remove all deleterious const.i.tuents; the subject, however, is fully treated in Chapter VIII.
For amalgamating I prefer some form of settler to any further grinding appliance, but I note also improvements in the rotary amalgamating barrel, which, though slow, is, under favourable conditions, an effective amalgamator. The introduction of steam under pressure into an iron cylinder containing a charge of concentrates with mercury is said to have produced good results, and I am quite prepared to believe such would be the case, as we have long known that the application of steam to ores in course of amalgamation facilitates the process considerably.