BestLightNovel.com

The Seven Follies of Science Part 3

The Seven Follies of Science - BestLightNovel.com

You’re reading novel The Seven Follies of Science Part 3 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

It is probable that more time, effort, and money have been wasted in the search for a perpetual-motion machine than have been devoted to attempts to square the circle or even to find the philosopher's stone. And while it has been claimed in favor of this delusion that the pursuit of it has given rise to valuable discoveries in mechanics and physics, some even going so far as to urge that we owe the discovery of the great law of the conservation of energy to the suggestions made by the perpetual-motion seekers, we certainly have no evidence to show anything of the kind. Perpetual motion was declared to be an impossibility upon purely mechanical and mathematical grounds long before the law of the conservation of energy was thought of, and it is very certain that this delusion had no place in the thoughts of Rumford, Black, Davy, Young, Joule, Grove, and others when they devoted their attention to the laws governing the transformation of energy. Those who pursued such a will-o'-the-wisp, were not the men to point the way to any scientific discovery.

The search for a perpetual-motion machine seems to be of comparatively modern origin; we have no record of the labors of ancient inventors in this direction, but this may be as much because the records have been lost, as because attempts were never made. The works of a mechanical inventor rarely attracted much attention in ancient times, while the mathematical problems were regarded as amongst the highest branches of philosophy, and the search for the philosopher's stone and the elixir of life appealed alike to priest and layman. We have records of attempts made 4000 years ago to square the circle, and the history of the philosopher's stone is lost in the mists of antiquity; but it is not until the eleventh or twelfth century that we find any reference to perpetual motion, and it was not until the close of the sixteenth and the beginning of the seventeenth century that this problem found a prominent place in the writings of the day.

By perpetual motion is meant a machine which, without a.s.sistance from any external source except gravity, shall continue to go on moving until the parts of which it is made are worn out. Some insist that in order to be properly ent.i.tled to the name of a perpetual-motion machine, it must evolve more power than that which is merely required to run it, and it is true that almost all those who have attempted to solve this problem have avowed this to be their object, many going so far as to claim for their contrivances the ability to supply unlimited power at no cost whatever, except the interest on a small investment, and the trifling amount of oil required for lubrication. But it is evident that a machine which would of itself maintain a regular and constant motion would be of great value, even if it did nothing more than move itself. And this seems to have been the idea upon which those men worked, who had in view the supposed reward offered for such an invention as a means for finding the longitude. And it is well known that it was the hope of attaining such a reward that spurred on very many of those who devoted their time and substance to the subject.

There are several legitimate and successful methods of obtaining a practically perpetual motion, provided we are allowed to call to our aid some one of the various natural sources of power. For example, there are numerous mountain streams which have never been known to fail, and which by means of the simplest kind of a water-wheel would give constant motion to any light machinery. Even the wind, the emblem of fickleness and inconstancy, may be harnessed so that it will furnish power, and it does not require very much mechanical ingenuity to provide means whereby the surplus power of a strong gale may be stored up and kept in reserve for a time of calm. Indeed this has frequently been done by the raising of weights, the winding up of springs, the pumping of water into storage reservoirs and other simple contrivances.

The variations which are constantly occurring in the temperature and the pressure of the atmosphere have also been forced into this service. A clock which required no winding was exhibited in London towards the latter part of the eighteenth century. It was called a perpetual motion, and the working power was derived from variations in the quant.i.ty, and consequently in the weight of the mercury, which was forced up into a gla.s.s tube closed at the upper end and having the lower end immersed in a cistern of mercury after the manner of a barometer. It was fully described by James Ferguson, whose lectures on Mechanics and Natural Philosophy were edited by Sir David Brewster. It ran for years without requiring winding, and is said to have kept very good time. A similar contrivance was employed in a clock which was possessed by the Academy of Painting at Paris. It is described in Ozanam's work, Vol. II, page 105, of the edition of 1803.



The changes which are constantly taking place in the temperature of all bodies, and the expansion and contraction which these variations produce, afford a very efficient power for clocks and small machines.

Professor W. W. R. Ball tells us that "there was at Paris in the latter half of last century a clock which was an ingenious ill.u.s.tration of such perpetual motion. The energy, which was stored up in it to maintain the motion of the pendulum, was provided by the expansion of a silver rod.

This expansion was caused by the daily rise of temperature, and by means of a train of levers it wound up the clock. There was a disconnecting apparatus, so that the contraction due to a fall of temperature produced no effect, and there was a similar arrangement to prevent overwinding. I believe that a rise of eight or nine degrees Fahrenheit was sufficient to wind up the clock for twenty-four hours."

Another indirect method of winding a watch is thus described by Professor Ball:

"I have in my possession a watch, known as the Lohr patent, which produces the same effect by somewhat different means. Inside the case is a steel weight, and if the watch is carried in a pocket this weight rises and falls at every step one takes, somewhat after the manner of a pedometer. The weight is moved up by the action of the person who has it in his pocket, and in falling the weight winds up the spring of the watch. On the face is a small dial showing the number of hours for which the watch is wound up. As soon as the hand of this dial points to fifty-six hours, the train of levers which wind up the watch disconnects automatically, so as to prevent overwinding the spring, and it reconnects again as soon as the watch has run down eight hours. The watch is an excellent time-keeper, and a walk of about a couple of miles is sufficient to wind it up for twenty-four hours."

Dr. Hooper, in his "Rational Recreations," has described a method of driving a clock by the motion of the tides, and it would not be difficult to contrive a very simple arrangement which would obtain from that source much more power than is required for that purpose. Indeed the probability is that many persons now living will see the time when all our railroads, factories, and lighting plants will be operated by the tides of the ocean. It is only a question of return for capital, and it is well known that that has been falling steadily for years. When the interest on investments falls to a point sufficiently low, the tides will be harnessed and the greater part of the heat, light, and power that we require will be obtained from the immense amount of energy that now goes to waste along our coasts.

Another contrivance by which a seemingly perpetual motion may be obtained is the dry pile or column of De Luc. The pile consists of a series of disks of gilt and silvered paper placed back to back and alternating, all the gilt sides facing one way and all the silver sides the other. The so-called gilding is really Dutch metal or copper, and the silver is tin or zinc, so that the two actually form a voltaic couple. Sometimes the paper is slightly moistened with a weak solution of mola.s.ses to insure a certain degree of dampness; this increases the action, for if the paper be artificially dried and kept in a perfectly dry atmosphere, the apparatus will not work. A pair of these piles, each containing two or three thousand disks the size of a quarter of a dollar, may be arranged side by side, vertically, and two or three inches apart. At the lower ends they are connected by a bra.s.s plate, and the upper ends are each surmounted by a small metal bell and between these bells a gilt ball, suspended by a silk thread, keeps vibrating perpetually. Many years ago I made a pair of these columns which kept a ball in motion for nearly two years, and Professor Silliman tells us that "a set of these bells rang in Yale College laboratory for six or eight years unceasingly." How much longer the columns would have continued to furnish energy sufficient to cause the b.a.l.l.s to vibrate, it might be difficult to determine. The amount of energy required is exceedingly small, but since the columns are really nothing but a voltaic pile, it is very evident that after a time they would become exhausted.

Such a pair of columns, covered with a tall gla.s.s shade, form a very interesting piece of bric-a-brac, especially if the bells have a sweet tone, but the contrivance is of no practical use except as embodied in Bohnenberger's electroscope.

Inventions of this kind might be multiplied indefinitely, but none of these devices can be called a perpetual motion because they all depend for their action upon energy derived from external sources other than gravity. But the authors of these inventions are not to be cla.s.sed with the regular perpetual-motion-mongers. The purposes for which these arrangements were invented were legitimate, and the contrivances answered fully the ends for which they were intended. The real perpetual-motion-seekers are men of a different stamp, and their schemes readily fall into one of these three cla.s.ses: 1. ABSURDITIES, 2.

FALLACIES, 3. FRAUDS. The following is a description of the most characteristic machines and apparatus of which accounts have been published.

1. ABSURDITIES

In this cla.s.s may be included those inventions which have been made or suggested by honest but ignorant persons in direct violation of the fundamental principles of mechanics and physics. Such inventions if presented to any expert mechanic or student of science, would be at once condemned as impracticable, but as a general rule, the inventors of these absurd contrivances have been so confident of success, that they have published descriptions and sketches of them, and even gone so far as to take out patents before they have tested their inventions by constructing a working machine. It is said, that at one time the United States Patent Office issued a circular refusal to all applicants for patents of this kind, but at present instead of sending such a circular, the applicant is quietly requested to furnish a _working_ model of his invention and that usually ends the matter. While I have no direct information on the subject, I suspect that the circular was withdrawn because of the amount of useless correspondence, in the shape of foolish replies and arguments, which it drew forth. To require a working model is a reasonable request and one for which the law duly provides, and when a successful model is forthcoming, a patent will no doubt be granted; but until that is presented the officials of the Patent Office can have no positive information in regard to the practicability of the invention.

The earliest mechanical device intended to produce perpetual motion is that known as the overbalancing wheel. This is described in a sketch book of the thirteenth century by Wilars de Honecourt, an architect of the period, and since then it has been re-invented hundreds of times. In its simplest forms it is thus described and figured by Ozanam:

"Fig. 5 represents a large wheel, the circ.u.mference of which is furnished, at equal distances, with levers, each bearing at its extremity a weight, and movable on a hinge so that in one direction they can rest upon the circ.u.mference, while on the opposite side, being carried away by the weight at the extremity, they are obliged to arrange themselves in the direction of the radius continued. This being supposed, it is evident that when the wheel turns in the direction ABC, the weights A, B, and C will recede from the center; consequently, as they act with more force, they will carry the wheel towards that side; and as a new lever will be thrown out, in proportion as the wheel revolves, it thence follows, say they, that the wheel will continue to move in the same direction. But notwithstanding the specious appearance of this reasoning, experience has proved that the machine will not go; and it may indeed be demonstrated that there is a certain position in which the center of gravity of all these weights is in the vertical plane pa.s.sing through the point of suspension, and that therefore it must stop."

[Ill.u.s.tration: Fig. 5.]

[Ill.u.s.tration: Fig. 6.]

Another invention of a similar kind is thus described by the same author:

"In a cylindric drum, in perfect equilibrium on its axis, are formed channels as seen in Fig. 6, which contain b.a.l.l.s of lead or a certain quant.i.ty of quicksilver. In consequence of this disposition, the b.a.l.l.s or quicksilver must, on the one side, ascend by approaching the center, and on the other must roll towards the circ.u.mference.

The machine ought, therefore, to turn incessantly towards that side."

In his "Course of Lectures on Natural Philosophy," Dr. Thomas Young speaks of these contrivances as follows:

"One of the most common fallacies, by which the superficial projectors of machines for obtaining perpetual motion have been deluded, has arisen from imagining that any number of weights ascending by a certain path, on one side of the center of motion and descending on the other at a greater distance, must cause a constant preponderance on the side of the descent: for this purpose the weights have either been fixed on hinges, which allow them to fall over at a certain point, so as to become more distant from the center, or made to slide or roll along grooves or planes which lead them to a more remote part of the wheel, from whence they return as they ascend; but it will appear on the inspection of such a machine, that although some of the weights are more distant from the center than others, yet there is always a proportionately smaller number of them on that side on which they have the greatest power, so that these circ.u.mstances precisely counterbalance each other."

[Ill.u.s.tration: Fig. 7.]

He then gives the ill.u.s.tration (Fig. 7), shown on the preceding page, of "a wheel supposed to be capable of producing a perpetual motion; the descending b.a.l.l.s acting at a greater distance from the center, but being fewer in number than the ascending. In the model, the b.a.l.l.s may be kept in their places by a plate of gla.s.s covering the wheel."

[Ill.u.s.tration: Fig. 8.]

A more elaborate arrangement embodying the same idea is figured and described by Ozanam. The machine, which is shown in Fig. 8, consists of "a kind of wheel formed of six or eight arms, proceeding from a center where the axis of motion is placed. Each of these arms is furnished with a receptacle in the form of a pair of bellows: but those on the opposite arms stand in contrary directions, as seen in the figure. The movable top of each receptacle has affixed to it a weight, which shuts it in one situation and opens it in the other. In the last place, the bellows of the opposite arms have a communication by means of a ca.n.a.l, and one of them is filled with quicksilver.

"These things being supposed, it is visible that the bellows on the one side must open, and those on the other must shut; consequently, the mercury will pa.s.s from the latter into the former, while the contrary will be the case on the opposite side."

Ozanam navely adds: "It might be difficult to point out the deficiency of this reasoning; but those acquainted with the true principles of mechanics will not hesitate to bet a hundred to one, that the machine, when constructed, will not answer the intended purpose."

That this bet would have been a perfectly safe one must be quite evident to any person who has the slightest knowledge of practical mechanics, and yet the fundamental idea which is embodied in this and the other examples which we have just given, forms the basis of almost all the attempts which have been made to produce a perpetual motion by purely mechanical means.

The hydrostatic paradox by which a few ounces of liquid may apparently balance many pounds, or even tons, has frequently suggested a form of apparatus designed to secure a perpetual motion. Dr. Arnott, in his "Elements of Physics," relates the following anecdote: "A projector thought that the vessel of his contrivance, represented here (Fig. 9), was to solve the renowned problem of the perpetual motion. It was goblet-shaped, lessening gradually towards the bottom until it became a tube, bent upwards at _c_ and pointing with an open extremity into the goblet again. He reasoned thus: A pint of water in the goblet _a_ must more than counterbalance an ounce which the tube _b_ will contain, and must, therefore, be constantly pus.h.i.+ng the ounce forward into the vessel again at _a_, and keeping up a stream or circulation, which will cease only when the water dries up. He was confounded when a trial showed him the same level in _a_ and in _b_."

[Ill.u.s.tration: Fig. 9.]

This suggestion has been adopted over and over again by sanguine inventors. Dircks, in his "Perpetuum Mobile," tells us that a contrivance, on precisely the same principle, was proposed by the Abbe de la Roque, in "Le Journal des Scavans," Paris, 1686. The instrument was a U tube, one leg longer than the other and bent over, so that any liquid might drop into the top end of the short leg, which he proposed to be made of wax, and the long one of iron. Presuming the liquid to be more condensed in the metal than the wax tube, it would flow from the end into the wax tube and so continue.

This is a typical case. A man of learning and of high position is so confident that his theory is right that he does not think it worth while to test it experimentally, but rushes into print and immortalizes himself as the author of a blunder. It is safe to say that this absurd invention will do more to perpetuate his name than all his learning and real achievements. And there are others in the same predicament--circle-squarers who, a quarter of a century hence, will be remembered for their errors when all else connected with them will be forgotten.

To every miller whose mill ceased working for want of water, the idea has no doubt occurred that if he could only pump the water back again and use it a second or a third time he might be independent of dry or wet seasons. Of course no practical miller was ever so far deluded as to attempt to put such a suggestion into practice, but innumerable machines of this kind, and of the most crude arrangement, have been sketched and described in magazines and papers. Figures of wheels driving an ordinary pump, which returns to an elevated reservoir the water which has driven the wheel, are so common that it is not worth while to reproduce any of them. In the following attempt, however, which is copied from Bishop Wilkins' famous book, "Mathematical Magic" (1648), the well-known Archimedean screw is employed instead of a pump, and the navete of the good bishop's description and conclusion are well worth the s.p.a.ce they will occupy.

After an elaborate description of the screw, he says: "These things, considered together, it will hence appear how a perpetual motion may seem easily contrivable. For, if there were but such a water-wheel made on this instrument, upon which the stream that is carried up may fall in its descent, it would turn the screw round, and by that means convey as much water up as is required to move it; so that the motion must needs be continual since the same weight which in its fall does turn the wheel, is, by the turning of the wheel, carried up again. Or, if the water, falling upon one wheel, would not be forcible enough for this effect, why then there might be two, or three, or more, according as the length and elevation of the instrument will admit; by which means the weight of it may be so multiplied in the fall that it shall be equivalent to twice or thrice that quant.i.ty of water which ascends; as may be more plainly discerned by the following diagram (Fig. 10):

"Where the figure LM at the bottom does represent a wooden cylinder with helical cavities cut in it, which at AB is supposed to be covered over with tin plates, and three waterwheels, upon it, HIK; the lower cistern, which contains the water, being CD. Now, this cylinder being turned round, all the water which from the cistern ascends through it, will fall into the vessel at E, and from that vessel being conveyed upon the water-wheel H, shall consequently give a circular motion to the whole screw. Or, if this alone should be too weak for the turning of it, then the same water which falls from the wheel H, being received into the other vessel F, may from thence again descend on the wheel I, by which means the force of it will be doubled. And if this be yet insufficient, then may the water, which falls on the second wheel I, be received into the other vessel G, and from thence again descend on the third wheel at K; and so for as many other wheels as the instrument is capable of. So that besides the greater distance of these three streams from the center or axis by which they are made so much heavier; and besides that the fall of this outward water is forcible and violent, whereas the ascent of that within is natural--besides all this, there is twice as much water to turn the screw as is carried up by it.

[Ill.u.s.tration: Fig. 10.]

"But, on the other side, if all the water falling upon one wheel would be able to turn it round, then half of it would serve with two wheels, and the rest may be so disposed of in the fall as to serve unto some other useful, delightful ends.

"When I first thought of this invention, I could scarce forbear, with Archimedes, to cry out 'Eureka! Eureka!' it seeming so infallible a way for the effecting of a perpetual motion that nothing could be so much as probably objected against it; but, upon trial and experience, I find it altogether insufficient for any such purpose, and that for these two reasons:

"1. The water that ascends will not make any considerable stream in the fall.

"2. This stream, though multiplied, will not be of force enough to turn about the screw."

How well it would have been for many of those inventors, who supposed that they had discovered a successful perpetual motion, if they had only given their contrivances a fair and unprejudiced test as did the good old bishop!

A modification of this device, in which mercury is used instead of water, is thus described by a correspondent of "The Mechanic's Magazine." (London.)

"In Fig. 11, A is the screw turning on its two pivots GG; B is a cistern to be filled above the level of the lower aperture of the screw with mercury, which I conceive to be preferable to water on many accounts, and princ.i.p.ally because it does not adhere or evaporate like water; C is a reservoir, which, when the screw is turned round, receives the mercury which falls from the top; there is a pipe, which, by the force of gravity, conveys the mercury from the reservoir C on to (what for want of a better term may be called) the float-board E, fixed at right angles to the center [axis] of the screw, and furnished at its circ.u.mference with ridges or floats to intercept the mercury, the moment and weight of which will cause the float-board and screw to revolve, until, by the proper inclination of the floats, the mercury falls into the receiver F, from whence it again falls by its spout into the cistern G, where the constant revolution of the screw takes it up again as before."

He then suggests some difficulties which the ball, seen just under the letter E, is intended to overcome, but he confesses that he has never tried it, and to any practical mechanic it is very obvious that the machine will not work. But we give the description in the language of the inventor, as a fair type of this cla.s.s of perpetual-motion machines.

[Ill.u.s.tration: Fig. 11.]

In the year 1790 a Doctor Schweirs took out a patent for a machine in which small metal b.a.l.l.s were used instead of a liquid, and they were raised by a sort of chain pump which delivered them upon the circ.u.mference of a large wheel, which was thus caused to revolve. It was claimed for this invention that it kept going for some months, but any mechanic who will examine the Doctor's drawing must see that it could not have continued in motion after the initial impulse had been expended.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Seven Follies of Science Part 3 summary

You're reading The Seven Follies of Science. This manga has been translated by Updating. Author(s): John Phin. Already has 648 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com