BestLightNovel.com

Langstroth on the Hive and the Honey-Bee Part 3

Langstroth on the Hive and the Honey-Bee - BestLightNovel.com

You’re reading novel Langstroth on the Hive and the Honey-Bee Part 3 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

"The drone pa.s.ses three days in the egg, six and a half as a worm, and changes into a perfect insect on the twenty-fourth or twenty-fifth day after the egg is laid."

"The _development_ of _each species_ likewise proceeds more slowly when the colonies are weak or the air cool, and when the weather is very cold it is entirely suspended. Dr. Hunter has observed that the eggs, worms and nymphs all require a heat above 70 of Fahrenheit for their evolution."

In the chapter on protection against extremes of _heat_ and _cold_, I have dwelt, at some length, upon the importance of constructing the hives in such a manner as to enable the bees to preserve, as far as possible, a uniform temperature in their tenement. In thin hives exposed to the sun, the heat is sometimes so great as to destroy the eggs and the larvae, even when the combs escape from being melted; and the cold is often so severe as to check the development of the brood, and sometimes to kill it outright.

In such hives, when the temperature out of doors falls suddenly and severely, the bees at once feel the unfavorable change; they are obliged in self defence to huddle together to keep warm, and thus large portions of the brood comb are often abandoned, and the brood either destroyed at once by the cold, or so enfeebled that they never recover from the shock. Let every bee keeper, in all his operations, remember that brood comb must never be exposed to a low temperature so as to become chilled: the disastrous effects are almost as certain, as when the eggs of a setting hen are left, for too long a time, by the careless mother. The brood combs are never safe when taken for any considerable time from the bees, unless the temperature is fully up to summer heat.

"[4]The young bees break their envelope with their teeth, and a.s.sisted, as soon as they come forth, by the older ones, proceed to cleanse themselves from the moisture and exuviae with which they were surrounded.



Both drones and workers on emerging from the cell are, at first grey, soft and comparatively helpless so that some time elapses before they take wing.

"With respect to the coc.o.o.ns spun by the different larvae, both workers and drones spin _complete coc.o.o.ns_, or inclose themselves on every side; royal larvae construct only _imperfect coc.o.o.ns_, open behind, and enveloping only the head, thorax, and first ring of the abdomen; and Huber concludes, without any hesitation, that the final cause of their forming only incomplete coc.o.o.ns is, that they may thus be exposed to the mortal sting of the first hatched queen, whose instinct leads her instantly to seek the destruction of those who would soon become her rivals.

"If the royal larvae spun complete coc.o.o.ns, the stings of the queens seeking to destroy their rivals might be so entangled in their meshes that they could not be disengaged. 'Such,' says Huber, 'is the instinctive enmity of young queens to each other, that I have seen one of them, immediately on its emergence from the cell, rush to those of its sisters, and tear to pieces even the imperfect larvae. Hitherto philosophers have claimed our admiration of nature for her care in preserving and multiplying the species. But from these facts we must now admire her precautions in exposing certain individuals to a mortal hazard.'"

The coc.o.o.n of the royal larva is very much stronger and coa.r.s.er than that spun by the drone or worker, its texture considerably resembling that of the silk worm's. The young queen does not come forth from her cell until she is quite mature; and as its great size gives her abundant room to exercise her wings she is capable of flying as soon as she quits it. While still in her cell she makes the fluttering and piping noises with which every observant bee keeper is so well acquainted.

Some Apiarians have supposed that the queen bee has the power to regulate the development of eggs in her ovaries, so that few or many are produced, according to the necessities of the colony. This is evidently a mistake. Her eggs, like those of the domestic hen, are formed without any volition of her own, and when fully developed, must be extruded. If the weather is unfavorable, or if the colony is too feeble to maintain sufficient heat, a smaller number of eggs are developed in her ovaries, just as unfavorable circ.u.mstances diminish the number of eggs laid by the hen; if the weather is very cold, egg-laying usually ceases altogether. In the lat.i.tude of Philadelphia, I opened one of my hives on the 5th day of February, and found an abundance of eggs and brood, although the winter had been an unusually cold one, and the temperature of the preceding month very low. The fall of 1852 was a warm one, and eggs and brood were found in a hive which I examined on the 21st of October. Powerful stocks in well protected hives contain some brood, at least ten months in the year; in warm countries, bees probably breed, every month in the year.

It is highly interesting to see in what way the supernumerary eggs of the queen are disposed of. When the number of workers is too small to take charge of all her eggs, or when there is a deficiency of bee bread to nourish the young, (See chapter on Pollen,) or when, for any reason, she judges it not best to deposit them in cells, she stands upon a comb, and simply extrudes them from her oviduct, and the workers devour them as fast as they are laid! This I have repeatedly witnessed in my observing hives, and admired the sagacity of the queen in economizing her necessary work after this fas.h.i.+on, instead of laboriously depositing the eggs in cells where they are not wanted. What a difference between her wise management and the stupidity of a hen obstinately persisting to set upon addled eggs, or pieces of chalk, and often upon nothing at all.

The workers eat up also all the eggs which are dropped, or deposited out of place by the queen; in this way, nothing goes to waste, and even a tiny egg is turned to some account. Was there ever a better comment upon the maxim? "Take care of the pence, and the pounds will take care of themselves."

Do the workers who appear to be so fond of a t.i.t-bit in the shape of a new laid egg, ever experience a struggle between their appet.i.tes and the claims of duty, and does it cost them some self denial to refrain from making a breakfast on a fresh laid egg? It is really very difficult for one who has carefully watched the habits of bees, to speak of his little favorites in any other way than as though they possessed an intelligence almost, if not quite, akin to reason.

It is well known to every breeder of poultry, that the fertility of a hen decreases with age, until at length, she becomes entirely barren; it is equally certain that the fertility of the queen bee ordinarily diminishes after she has entered upon her third year. She sometimes ceases to lay Worker eggs, a considerable time before she dies of old age; the contents of the spermatheca are exhausted; the eggs can no longer be impregnated and must therefore produce drones.

The queen bee usually dies of old age, some time in her fourth year, although instances are on record of some having survived a year longer.

It is highly important to the bee keeper who would receive the largest returns from his bees, to be able, as in my hives, to catch the queen and remove her, when she has pa.s.sed the period of her greatest fertility. In the sequel, full directions will be given, as to the proper time and mode of effecting it.

Before proceeding farther in the natural history of the queen bee, I shall describe more particularly, the other inmates of the hive.

THE DRONES OR MALE BEES.

The drones are, unquestionably, the male bees. Dissection proves that they have the appropriate organs of generation. They are much larger and stouter than either the queen or workers; although their bodies are not quite so long as that of the queen. They have no sting with which to defend themselves; no proboscis which is suitable for gathering honey from the flowers, and no baskets on their thighs for holding the bee-bread. They are thus physically disqualified for work, even if they were ever so well disposed to it. Their proper office is to impregnate the young queens, and they are usually destroyed by the bees, soon after this is completed.

Dr. Evans the author of a beautiful poem on bees thus appropriately describes them:--

"Their short proboscis sips No luscious nectar from the wild thyme's lips, From the lime's leaf no amber drops they steal, Nor bear their grooveless thighs the foodful meal: On other's toils in pamper'd leisure thrive The lazy fathers of the industrious hive."

The drones begin to make their appearance in April or May; earlier or later, according to climate and the forwardness of the season, and strength of the stock. They require about twenty-four days for their full development from the egg. In colonies which are too weak to swarm, none, as a general rule, are reared: they are not needed, for in such hives, as no young queens are raised, they would be only useless consumers.

The number of drones in a hive is often very great, amounting, not merely to hundreds, but sometimes to thousands. It seems, at first, very difficult to understand why there should be so many, especially since it has been ascertained that a single one will impregnate a queen for life.

But as intercourse always takes place high in the air, the young queens are obliged to leave the hive for this purpose; and it is exceedingly important to their safety, that they should be sure of finding one, without being compelled to make frequent excursions. Being larger than a worker, and less quick on the wing, they are more exposed to be caught by birds, or blown down and destroyed by sudden gusts of wind.

In a large Apiary, a few drones in each hive, or the number usually found in one, might be amply sufficient. But it must be borne in mind, that under these circ.u.mstances, bees are not in a state of nature.

Before they were domesticated, a colony living in a forest, often had no neighbors for miles. Now a good stock in our climate, sometimes sends out three or more swarms, and in the tropical climates, of which the bee is a native, they increase with astonis.h.i.+ng rapidity. At Sydney, in Australia, a single colony is stated to have multiplied to 300 in three years. All the new swarms except the first, are led off by a young queen, and as she is never impregnated until after she has been established as the head of a separate family, it is important that they should all be accompanied by a goodly number of drones; and this renders it necessary that a large number should be produced in the parent hive.

As this necessity no longer exists, when the bee is domesticated, the production of so many drones should be discouraged. Traps have been invented to destroy them, but it is much better to save the bees the labor and expense of rearing such a host of useless consumers. This can readily be done by the use of my hives. The cells in which the drones are reared, are much larger than those appropriated to the raising of workers. The combs containing them may be taken out, to have their places supplied with worker's cells, and thus the over production of drones may easily be prevented. Some colonies contain so much drone comb as to be nearly worthless.

I have no doubt that some of my readers will object to this mode of management as interfering with nature: but let them remember that the bee is not in a state of nature, and that the same objection might be urged against killing off the super-numerary males of our domestic animals.

In July or August, soon after the swarming season is over, the bees expel the drones from the hive. They sometimes sting them, and sometimes gnaw the roots of their wings, so that when driven from the hive, they cannot return. If not treated in either of these summary ways, they are so persecuted and starved, that they soon perish. The hatred of the bees extends even to the young which are still unhatched: they are mercilessly pulled from the cells, and destroyed with the rest. How wonderful that instinct which teaches the bees that there is no longer any occasion for the services of the drones, and which impels them to destroy those members of the colony, which, a short time before, they reared with such devoted attention!

A colony which neglects to expel its drones at the usual season, ought always to be examined. The queen is probably either diseased or dead. In my hives, such an examination may be easily made, the true state of the case ascertained, and the proper remedies at once applied. (See Chapter on the Loss of the Queen.)

THE PRODUCTION OF SO MANY DRONES NECESSARY, IN A STATE OF NATURE, TO PREVENT DEGENERACY FROM "IN AND IN BREEDING."

I have often been able, by the reasons previously a.s.signed, to account for the necessity of such a large number of drones in a state of nature, to the satisfaction of others, but never fully to my own. I have repeatedly queried, why impregnation might not just as well have been effected _in the hive_, as on the wing, in the open air. Two very obvious and highly important advantages would have resulted from such an arrangement. 1st. A few dozen drones would have amply sufficed for the wants of any colony, even if, (as in tropical climates,) it swarmed half a dozen times or oftener, in the same season. 2d. The young queens would have been exposed to none of those risks which they now incur, in leaving the hive for fecundation.

I was unable to show how the existing arrangement is best; although I never doubted that there must be a satisfactory reason for this seeming imperfection. To suppose otherwise, would be highly unphilosophical, since we constantly see, as the circle of our knowledge is enlarged, many mysteries in nature hitherto inexplicable, fully cleared up.

Let me here ask if the disposition which too many students of nature cherish, to reject some of the doctrines of revealed religion, is not equally unphilosophical. Neither our ignorance of all the facts necessary to their full elucidation, nor our inability to harmonize these facts in their mutual relations and dependencies, will justify us in rejecting any truth which G.o.d has seen fit to reveal, either in the book of nature, or in His holy word. The man who would subst.i.tute his own speculations for the divine teachings, has embarked, without rudder or chart, pilot or compa.s.s, upon the uncertain ocean of theory and conjecture; unless he turns his prow from its fatal course, no Sun of Righteousness will ever brighten for him the dreary expanse of waters; storms and whirlwinds will thicken in gloom, on his "voyage of life,"

and no favoring gales will ever waft his shattered bark to a peaceful haven.

The thoughtful reader will require no apology for the moralizing strain of many of my remarks, nor blame a clergyman, if forgetting sometimes to speak as the mere naturalist, he endeavors to find,

"Tongues in trees, books in the running brooks, _Sermons_ in '_bees_,' and 'G.o.d' in every thing."

To return to the point from which I have digressed; a new attempt to account for the existence of so many drones. If a farmer persists in what is called "breeding in and in," that is, from the same stock without changing the blood, it is well known that a rapid degeneracy is the inevitable consequence. This law extends, as far as we know, to all animal life, and even man is not exempt from its influence. Have we any reason to suppose that the bee is an exception? or that ultimate degeneracy would not ensue, unless some provision was made to counteract the tendency to in and in breeding? If fecundation had taken place in the hive, the queen bee must of necessity, have been impregnated by drones from a common parent, and the same result must have taken place in each successive generation, until the whole species would eventually have "run out." By the present arrangement, the young females, when they leave the hive, often find the air swarming with drones, many of which belong to other colonies, and thus by crossing the breed, a provision is constantly made to prevent deterioration.

Experience has proved not only that it is unnecessary to impregnation that there should be drones in the colony of the young queen, but that this may be effected even when there are no drones in the Apiary, and none except at some considerable distance. Intercourse takes place very high in the air, (perhaps that less risk may be incurred from birds,) and this is the more favorable to the continual crossing of stocks.

I am strongly persuaded that the decay of many flouris.h.i.+ng stocks, even when managed with great care, is to be attributed to the fact that they have become enfeebled by "close breeding," and are thus unable to resist the injurious influences which were comparatively harmless when the bees were in a state of high physical vigor. I shall, in the chapter on Artificial Swarming, explain in what way, by the use of my hives, the stock of bees may be easily crossed, when a cultivator is too remote from other Apiaries, to depend upon its being naturally effected.

THE WORKERS OR COMMON BEES.

The number of workers in a hive varies very much. A good swarm ought to contain 15,000 or 20,000; and in large hives, strong colonies which are not reduced by swarming, frequently number two or three times as many, during the height of the breeding season. We have well-authenticated instances of stocks much more populous than this. The Polish hives will hold several bushels, and yet we are informed by Mr. Dohiogost, that they swarm regularly, and that the swarms are so powerful that "they resemble a little cloud in the air." I shall hereafter consider how the size of the hive affects the number of bees that it may be expected to produce.

The workers, (as has been already stated,) are all females whose ovaries are too imperfectly developed to admit of their laying eggs. For a long time, they were regarded as neither males nor females, and were called Neuters; but more careful microscopic examinations have enabled us to detect the rudiments of their ovaries, and thus to determine their s.e.x.

The accuracy of these examinations has been verified by the well-known facts respecting _fertile workers_.

Riem, a German Apiarian, first discovered that workers sometimes lay eggs. Huber, in the course of his investigations on this subject, ascertained that such workers were raised in hives that had lost their queen, and in the vicinity of the royal cells in which young queens were being reared. He conjectured that they received accidentally, a small portion of the peculiar food of these infant queens, and in this way, he accounted for their reproductive organs being more developed than those of other workers. Workers reared in such hives, are in close proximity to the young queens, and there is certainly much probability that some of the royal jelly may be accidentally dropped into their cells; as, in these hives, the queen cells when first commenced are parallel to the horizon, instead of being perpendicular to it, as they are in other hives. I do not feel confident, however, that they are not sometimes bred in hives which have not lost their queen. The kind of eggs laid by these fertile workers, has already been noticed. Such workers are seldom tolerated in hives containing a fertile, healthy queen, though instances of this kind have been known to occur. The worker is much smaller than either the queen or the drone.[5] It is furnished with a tongue or proboscis, of the most curious and complicated structure, which, when not in use, is nicely folded under its abdomen; with this, it licks or brushes up the honey, which is thence conveyed to its honey-bag. This receptacle is not larger than a very small pea, and is so perfectly transparent, as to appear when filled, of the same color with its contents; it is properly the first stomach of the bee, and is surrounded by muscles which enable the bee to compress it, and empty its contents through her proboscis into the cells. (See Chapter on Honey.)

The hinder legs of the worker are furnished with a spoon-shaped hollow or basket, to receive the pollen or bee bread which she gathers from the flowers. (See Chapter on Pollen.)

Every worker is armed with a formidable sting, and when provoked, makes instant and effectual use of her natural weapon. The sting, when subjected to microscopic examination, exhibits a very curious and complicated mechanism. "It is moved[6] by muscles which, though invisible to the eye, are yet strong enough to force the sting, to the depth of one twelfth of an inch, through the thick skin of a man's hand.

At its root are situated two glands by which the poison is secreted: these glands uniting in one duct, eject the venemous liquid along the groove, formed by the junction of the two piercers. There are four barbs on the outside of each piercer: when the insect is prepared to sting, one of these piercers, having its point a little longer than the other, first darts into the flesh, and being fixed by its foremost beard, the other strikes in also, and they alternately penetrate deeper and deeper, till they acquire a firm hold of the flesh with their barbed hooks, and then follows the sheath, conveying the poison into the wound. The action of the sting, says Paley, affords an example of the union of _chemistry_ and mechanism; of chemistry in respect to the _venom_, which can produce such powerful effects; of mechanism as the sting is a compound instrument. The machinery would have been comparatively useless had it not been for the chemical process, by which in the insect's body _honey_ is converted into _poison_; and on the other hand, the poison would have been ineffectual, without an instrument to wound, and a syringe to inject it."

"Upon examining the edge of a very keen razor by the microscope, it appears as broad as the back of a pretty thick knife, rough, uneven, and full of notches and furrows, and so far from anything like sharpness, that an instrument, as blunt as this seemed to be, would not serve even to cleave wood. An exceedingly small needle being also examined, it resembled a rough iron bar out of a smith's forge. The sting of a bee viewed through the same instrument, showed everywhere a polish amazingly beautiful, without the least flaw, blemish, or inequality, and ended in a point too fine to be discerned."

The extremity of the sting being barbed like an arrow, the bee can seldom withdraw it, if the substance into which she darts it is at all tenacious. In losing her sting she parts with a portion of her intestines, and of necessity, soon perishes.

As the loss of the sting is always fatal to the bees, they pay a dear penalty for the exercise of their patriotic instincts; but they always seem ready, (except when they have taken "a drop too much," and are gorged with honey,) to die in defence of their home and treasures; or as the poet has expressed it, they

"Deem life itself to vengeance well resign'd, Die on the wound, and leave their sting behind."

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

Langstroth on the Hive and the Honey-Bee Part 3 summary

You're reading Langstroth on the Hive and the Honey-Bee. This manga has been translated by Updating. Author(s): L. L. Langstroth. Already has 611 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com