Aeroplanes and Dirigibles of War - BestLightNovel.com
You’re reading novel Aeroplanes and Dirigibles of War Part 4 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
The "Taube" commanded attention in Germany for the reason that it indicated the first departure from the adherence to the French designs which up to that time had been followed somewhat slavishly, owing to the absence of native initiative.
The individuality of character revealed in the "Taube" appealed to the German instinct, with the result that the machine achieved a greater reputation than might have been the case had it been pitted against other types of essentially Teutonic origin. The Taube was subsequently tested both in France and Great Britain, but failed to raise an equal degree of enthusiasm, owing to the manifestation of certain defects which marred its utility. This practical experience tended to prove that the Taube, like the Zeppelin, possessed a local reputation somewhat of the paper type. The Germans, however, were by no means disappointed by such adverse criticism, but promptly set to work to eliminate defects with a view to securing an all-round improvement.
The most successful of these endeavours is represented in the Taube-Rumpler aeroplane, which may be described as an improved edition of Etrich's original idea. As a matter of fact the modifications were of so slight, though important, a character that many machines generically described as Taubes are in reality Rumplers, but the difference is beyond detection by the ordinary and unpractised observer.
In the Rumpler machine the wings, like those of the Taube, a.s.sume broadly the form and shape of those of the pigeon or dove in flight. The early Rumpler machines suffered from sluggish control, but in the later types this defect has been overcome. In the early models the wings were flexible, but in the present craft they are rigid, although fitted with tips or ailerons. The supporting truss beneath the wings, which was such an outstanding feature of its prototype, has been dispensed with, the usual I-beam longitudinals being used in its stead. The latest machines fitted with 100-120 horse-power Mercedes motors have a fine turn of speed, possess an enhanced ascensional effort, and are far simpler to control.
Other German machines which are used in the military service are the Gotha and the Albatross. The former is a monoplane, and here again the influence of Etrich upon German aeroplane developments is strongly manifested, the shape of the bird's wing being retained. In the Gotha the truss which Etrich introduced is a prominent characteristic. The Albatross is a biplane, but this craft has proved to be somewhat slow and may be said to be confined to what might be described as the heavier aerial military duties, where great endurance and reliability are essential. As the war proceeds, doubtless Teuton ingenuity will be responsible for the appearance of new types, as well as certain modifications in the detail construction of the existing machines, but there is every indication that the broad lines of Etrich's conception will be retained in all monoplanes.
There is one point in which Germany has excelled. Wood is not employed in the construction of these heavier-than-air craft. Steel and the lighter tough alloys are exclusively used. In this way the minimum of weight consistent with the maximum of strength policy is carried out. Moreover the manufacture of component parts is facilitated and accelerated to a remarkable degree by the use of metal, while the tasks of fitting and repairing are notably expedited by the practice of standardisation. Germany is also manifesting commendable enterprise in the perfection of light powerful motors for these dynamic machines. The latest types of explosion-motors range from 100 to 150 horse-power; the advantages of these are obvious.
Upon the outbreak of hostilities the French possessed an enormous number and variety of aeroplanes and this aerial fleet had been brought to a high standard of organisation. The aerial fleet is sub-divided into squadrons called "escadrilles," each of which comprises six machines and pilots. These units are kept up to strength, wastage being made up from reserves, so as to maintain the requisite h.o.m.ogeneity.
But ere the war had been in progress many weeks an official order was issued forbidding the employment of the Bleriot, Deperdussin, Nieuport, and R.E.P. monoplanes. Those which received official approval included the Caudron, Henry, and Maurice Farman, Morane-Saulnier, and Voisin machines.
This drastic order came somewhat as a thunderbolt, and the reason for the decree has not been satisfactorily revealed. Suffice to say that in one stroke the efficiency and numerical strength of the French aerial navy were reduced very appreciably. For instance, it is stated that there were thirty escadrilles of Bleriot monoplanes together with pilots at the front, in addition to thirty mixed escadrilles of the other prohibited types with their fliers. Moreover a round 33 escadrilles of all the various types were in reserve. The effect of the military order was to reduce the effective strength by no fewer than 558 aeroplanes.
Seeing that the French aerial force was placed at a great disadvantage numerically by this action, there seems to be ample justification for the hostile criticism which the decree of prohibition aroused in certain circles, especially when it is remembered that there was not an equal number of the accepted machines available to take the place of those which had been ruled out of court. One effect of this decree was to throw some 400 expert aviators upon the waiting list for the simple reason that machines were unavailable. Some of the best aviation skill and knowledge which France possesses were affected by the order. It is stated that accomplished aviators, such as Vedrines, were unable to obtain machines.
It will be seen that the ultimate effect of the French military decree was to reduce the number of types to about four, each of which was allotted a specific duty. But whereas three different bi-planes are on the approved list there is only one monoplane--the Morane-Saulaier.
This machine, however, has a great turn of speed, and it is also able to climb at a very fast pace. In these respects it is superior to the crack craft of Germany, so that time after time the latter have refused battle in the skies, and have hurried back to their lines.
The Morane-Saulnier is the French mosquito craft of the air and like the insect, it is avowedly aggressive. In fact, its duties are confined to the work of chasing and bringing down the enemy, for which work its high manoeuvring capacity is excellently adapted. Its aggressive armament comprises a mitrailleuse. Unfortunately, however, the factory responsible for the production of this machine is at present handicapped by the limitations of its manufacturing plant, which when pushed to the utmost extent cannot turn out more than about ten machines per week. No doubt this deficiency will be remedied as the war proceeds by extension of the works or by allotting orders to other establishments, but at the time of the decree the manufacturing capacity was scarcely sufficient to make good the wastage, which was somewhat heavy.
As far as biplanes are concerned the Caudron is the fastest in flight and is likewise extremely quick in manoeuvring. It is a very small machine and is extremely light, but the fact that it can climb at the rate of over 330 feet per minute is a distinct advantage in its favour.
It supplements the Morane-Saulnier monoplane in the specific duty of the latter, while it is also employed for discovering the enemy's artillery and communicating the range of the latter to the French and British artillery. In this latter work it has played a very prominent part and to it is due in no small measure that deadly accuracy of the artillery of the Allies which has now become so famous. This applies especially to those tactics, where the field artillery dashes up to a position, discharges a number of rounds in rapid succession, or indulges in rafale firing, and then limbering up, rushes away before the enemy can reply.
As is well known the Farman biplanes possess high endurance qualities.
They can remain aloft for many hours at a stretch and are remarkably reliable. Owing to these qualities they are utilised for prolonged and searching reconnoitring duties such as strategical reconnaissances as distinct from the hurried and tactical reconnaissances carried out by fleeter machines. While they are not so speedy as the monoplanes of the German military establishment, endurance in this instance is preferable to pace. A thorough survey of the enemy's position over the whole of his military zone, which stretches back for a distance of 30 miles or so from the outer line of trenches, is of incalculable value to a commander who is contemplating any decisive movement or who is somewhat in doubt as to the precise character of his antagonist's tactics.
The French aerial fleet has been particularly active in its work of raiding hostile positions and submitting them to a fusillade of bombs from the clouds. The machine which is allotted this specific task is the Voisin biplane. This is due to the fact that this machine is able to carry a great weight. It was speedily discovered that in bomb-raids it is essential for an aeroplane to be able to carry a somewhat large supply of missiles, owing to the high percentage of misses which attends these operations. A raid by a machine capable of carrying only, say, half-a-dozen projectiles, is virtually a waste of fuel, and the endurance limitations of the fast machines reacts against their profitable use in this work. On the other hand, the fact that the Voisin machine is able to carry a large supply of bombs renders it an ideal craft for this purpose; hence the official decision to confine it to this work.
So far as the British efforts in aerial work are concerned there is no such display of rigid selection as characterises the practice of the French and German military authorities. Britain's position in the air has been extensively due to private enterprise, and this is still being encouraged. Moreover at the beginning of the war Britain was numerically far inferior both to her antagonist and to her ally. Consequently it was a wise move to encourage the private manufacture of machines which had already established their value. The consequence is that a variety of machines figure in the British aerial navy. Private initiative is excellently seconded by the Government manufacturing aeroplane factory, while the training of pilots is likewise being carried out upon a comprehensive scale. British manufacture may be divided into two broad cla.s.ses--the production of aeroplanes and of waterplanes respectively.
Although there is a diversity of types there is a conspicuous h.o.m.ogeneity for the most part, as was evidenced by the British raid carried out on February 11-12, when a fleet of 34 machines raided the various German military centres established along the coast of Flanders.
Considerable secrecy has been displayed by the British Government concerning the types of machines that are being utilised, although ample evidence exists from the producing activity of the various establishments that all available types which have demonstrated their reliability and efficiency are being turned to useful purpose. The Avro and Sopwith warplanes with their very high speeds have proved remarkably successful.
So far as manufacturing is concerned the Royal Aerial Factory may be said to const.i.tute the back bone of the British aerial fleet. This factory fulfils various purposes. It is not only engaged in the manufacture of machines, and the development of aeroplanes for specific duties, but also carries out the inspection and testing of machines built by private firms. Every machine is submitted to an exacting test before it is pa.s.sed into the service.
Three broad types of Government machines are manufactured at this establishment. There is that designed essentially for scouting operations, in which speed is the all-important factor and which is of the tractor type. Another is the "Reconnoitring" machine known officially as the "R.E." to-day, but formerly as the "B.E"
(Bleriot-Experimental), a considerable number of which are in commission.
This machine is also of the tractor type, carrying a pilot and an observer, and has a maximum speed of 40-50 miles per hour. If required it can further be fitted with an automatic gun for defence and attack.
The third craft is essentially a fighting machine. Owing to the introduction of the machine-gun which is fixed in the prow, with the marksman immediately behind it, the screw is placed at the rear. The pilot has his seat behind the gunner. The outstanding feature of these machines is the high factor of safety, which attribute has astonished some of the foremost aviation experts in the world.
Great Britain lagged behind her Continental rivals in the development of the Fourth Arm, especially in matters pertaining to motive power.
For some time reliance was placed upon foreign light highspeed explosion motors, but private enterprise was encouraged, with the result that British Motors comparing favourably in every respect with the best productions upon the Continent are now available. Development is still proceeding, and there is every evidence that in the near future entire reliance will be placed upon the native motor.
Undoubtedly, as the war progresses, many valuable lessons will be learned which will exercise an important bearing upon the design and construction of warplanes. The ordeals to which the machines are submitted in military duties are far more severe than any imposed by the conditions of commerce. Accordingly there is every indication that the conflict upon the Continent will represent a distinctive epoch in aeroplane design and construction. Many problems still await solution, such as the capacity to hover over a position, and it is quite possible that these complex and baffling questions will be settled definitely as the result of operations in the field. The aeroplane has reached a certain stage of evolution: further progress is virtually impossible unless something revolutionary is revealed, perfected, and brought to the practical stage.
CHAPTER VIII. SCOUTING FROM THE SKIES
From the moment when human flight was lifted from the rut of experiment to the field of practical application, many theories, interesting and illuminating, concerning the utility of the Fourth Arm as a military unit were advanced. The general consensus of expert opinion was that the flying machine would be useful to glean information concerning the movements of an enemy, rather than as a weapon of offence.
The war is substantiating this argument very completely. Although bomb-dropping is practised somewhat extensively, the results achieved are rather moral than material in their effects. Here and there startling successes have been recorded especially upon the British side, but these triumphs are outnumbered by the failures in this direction, and merely serve to emphasise the views of the theorists.
The argument was also advanced that, in this particular work, the aeroplane would prove more valuable than the dirigible, but actual campaigning has proved conclusively that the dirigible and the heavier-than-air machines have their respective fields of utility in the capacity of scouts. In fact in the very earliest days of the war, the British airs.h.i.+ps, though small and slow in movement, proved more serviceable for this duty than their dynamic consorts. This result was probably due to the fact that military strategy and tactics were somewhat nonplussed by the appearance of this new factor. At the time it was an entirely unknown quant.i.ty. It is true that aircraft had been employed in the Balkan and the Italo-Ottoman campaigns, but upon such a limited scale as to afford no comprehensive idea of their military value and possibilities.
The belligerents, therefore, were caught somewhat at a disadvantage, and an appreciable period of time elapsed before the significance of the aerial force could be appreciated, while means of counter acting or nullifying its influences had to be evolved simultaneously, and according to the exigencies of the moment. At all events, the protagonists were somewhat loth to utilise the dirigible upon an elaborate scale or in an aggressive manner. It was employed more after the fas.h.i.+on of a captive balloon, being sent aloft from a point well behind the front lines of the force to which it was attached, and well out of the range of hostile guns. Its manoeuvres were somewhat circ.u.mscribed, and were carried out at a safe distance from the enemy, dependence being placed upon the advantages of an elevated position for the gathering of information.
But as the campaign progressed, the airs.h.i.+ps became more daring. Their ability to soar to a great height offered them complete protection against gun-fire, and accordingly sallies over the hostile lines were carried out. But even here a certain hesitancy became manifest. This was perfectly excusable, for the simple reason that the dirigible, above all, is a fair-weather craft, and disasters, which had overtaken these vessels time after time, rendered prudence imperative. Moreover, but little was known of the range and destructiveness of anti-aircraft guns.
In the duty of reconnoitring the dirigible possesses one great advantage over its heavier-than-air rival. It can remain virtually stationary in the air, the propellers revolving at just sufficient speed to off-set the wind and tendencies to drift. In other words, it has the power of hovering over a position, thereby enabling the observers to complete their task carefully and with deliberation.
On the other hand, the means of enabling an aeroplane to hover still remain to be discovered. It must travel at a certain speed through the air to maintain its dynamic equilibrium, and this speed is often too high to enable the airman to complete his reconnaissance with sufficient accuracy to be of value to the forces below. All that the aeroplane can do is to circle above a certain position until the observer is satisfied with the data he has collected.
But hovering on the part of the dirigible is not without conspicuous drawbacks. The work of observation cannot be conducted with any degree of accuracy at an excessive alt.i.tude. Experience has proved that the range of the latest types of anti-aircraft weapons is in excess of antic.i.p.ations. The result is that the airs.h.i.+p is useless when hovering beyond the zone of fire. The atmospheric haze, even in the clearest weather, obstructs the observer's vision. The caprices of this obstacle are extraordinary, as anyone who has indulged in ballooning knows fully well. On a clear summer's day I have been able to see the ground beneath with perfect distinctness from a height of 4,500 feet, yet when the craft had ascended a further two or three hundred feet, the panorama was blurred. A film of haze lies between the balloon and the ground beneath.
And the character of this haze is continually changing, so that the aerial observer's task is rendered additionally difficult. Its effects are particularly notice able when one attempts to photograph the view unfolded below. Plate after plate may be exposed and nothing will be revealed. Yet at a slightly lower alt.i.tude the plates may be exposed and perfectly sharp and well-defined images will be obtained.
Seeing that the photographic eye is keener and more searching than the human organ of sight, it is obvious that this haze const.i.tutes a very formidable obstacle. German military observers, who have accompanied the Zeppelins and Pa.r.s.evals on numerous aerial journeys under varying conditions of weather, have repeatedly drawn attention to this factor and its caprices, and have not hesitated to venture the opinion that it would interfere seriously with military aerial reconnaissances, and also that it would tend to render such work extremely hazardous at times.
When these conditions prevail the dirigible must carry out its work upon the broad lines of the aeroplane. It must descend to the level where a clear view of the ground may be obtained, and in the interests of safety it has to keep on the move. To attempt to hover within 4,000 feet of the ground is to court certain disaster, inasmuch as the vessel offers a magnificent and steady target which the average gunner, equipped with the latest sighting devices and the most recent types of guns, scarcely could fail to hit.
But the airman in the aeroplane is able to descend to a comparatively low level in safety. The speed and mobility of his machine const.i.tute his protection. He can vary his alt.i.tude, perhaps only thirty or forty feet, with ease and rapidity, and this erratic movement is more than sufficient to perplex the marksmen below, although the airman is endangered if a rafale is fired in such a manner as to cover a wide zone.
Although the aeroplane may travel rapidly it is not too fleet for a keen observer who is skilled in his peculiar task. He may only gather a rough idea of the disposition of troops, their movements, the lines of communication, and other details which are indispensable to his commander, but in the main the intelligence will be fairly accurate.
Undulating flight enables him to determine speedily the alt.i.tude at which he is able to obtain the clearest views of the country beneath.
Moreover, owing to his speed he is able to complete his task in far less time than his colleague operating in the dirigible, the result being that the information placed at the disposal of his superior officers is more to the moment, and accordingly of greater value.
Reconnoitring by aeroplane may be divided into two broad categories, which, though correlated to a certain degree, are distinctive, because each const.i.tutes a specific phase in military operations. They are known respectively as "tactical" and "strategical" movements. The first is somewhat limited in its scope as compared with the latter, and has invariably to be carried out rapidly, whereas the strategical reconnaissance may occupy several hours.
The tactical reconnaissance concerns the corps or divisional commander to which the warplane is attached, and consequently its task is confined to the observation of the line immediately facing the particular corps or division. The aviator does not necessarily penetrate beyond the lines of the enemy, but, as a rule limits his flight to some distance from his outermost defences. The airman must possess a quick eye, because his especial duty is to note the disposition of the troops immediately facing him, the placing of the artillery, and any local movements of the forces that may be in progress. Consequently the aviator engaged on this service may be absent from his lines for only a few minutes, comparatively speaking; the intelligence he acquires must be speedily communicated to the force to which he is attached, because it may influence a local movement.
The strategical reconnaissance, on the other hand, affects the whole plan of campaign. The aviators told off for this duty are attached to the staff of the Commander-in-Chief, and the work has to be carried out upon a far more comprehensive and elaborate scale, while the airmen are called upon to penetrate well into the hostile territory to a point thirty, forty, or more miles beyond the outposts.
The procedure is to instruct the flier either to carry out his observations of the territory generally, or to report at length upon a specified stretch of country. In the latter event he may fly to and fro over the area in question until he has acquired all the data it is possible to collect. His work not only comprises the general disposition of troops, defences, placing of artillery, points where reserves are being held, high-roads, railways, base camps, and so forth, but he is also instructed to bring back as correct an idea as possible of what the enemy proposes to do, so that his Commander-in-Chief may adjust his moves accordingly. In order to perform this task with the requisite degree of thoroughness it is often necessary for the airman to remain in the air for several hours continuously, not returning, in fact, until he has completed the allotted duty.
The airman engaged in strategical aerial reconnaissance must possess, above all things, what is known as a "military" eye concerning the country he traverses. He must form tolerably correct estimates of the forces beneath and their character. He must possess the ability to read a map rapidly as he moves through the air and to note upon it all information which is likely to be of service to the General Staff.
The ability to prepare military sketches rapidly and intelligibly is a valuable attribute, and skill in aerial photography is a decidedly useful acquisition.
Such men must be of considerable stamina, inasmuch as great demands are made upon their powers of endurance. Being aloft for several hours imposes a severe tax upon the nervous system, while it must also be borne in mind that all sorts and conditions of weather are likely to be encountered, more particularly during the winter. Hail, rain, and blizzards may be experienced in turn, while the extreme cold which often prevails in the higher alt.i.tudes during the winter season is a fearful enemy to combat. Often an airman upon his return from such a reconnaissance has been discovered to be so numbed and dazed as a result of the prolonged exposure, that considerable time has elapsed before he has been sufficiently restored to set forth the results of his observations in a coherent, intelligible manner for the benefit of the General Staff. Under these circ.u.mstances it is not surprising that the most skilful and experienced aviators are generally reserved for this particular work. In addition to the natural accidents to which the strategical aerial observer is exposed, the dangers arising from hostile gun-fire must not be overlooked. He is manoeuvring the whole time over the enemy's firing zone, where anti-aircraft weapons are disposed strategically, and where every effort is made by artillery to bring him down, or compel him to repair to such a height as to render observation with any degree of accuracy well-nigh impossible.
The methods practised by the German aerial scout vary widely, and are governed in no small measure by the intrepidity and skill of the airman himself. One practice is to proceed alone upon long flights over the enemy's lines, penetrating just as far into hostile territory as the pilot considers advisable, and keeping, of course, within the limits of the radius of action of the machine, as represented by the fuel supply, the while carefully taking mental stock of all that he observes below.
It is a kind of roving commission without any definite aim in view beyond the collection of general intelligence.
This work, while productive and valuable to a certain degree, is attended with grave danger, as the German airmen have repeatedly found to their cost. Success is influenced very materially by the accuracy of the airman's judgment. A slight miscalculation of the velocity and direction of the wind, or failure to detect any variations in the climatic conditions, is sufficient to prove his undoing. German airmen who essayed journeys of discovery in this manner, often failed to regain their lines because they ventured too far, misjudged the speed of the wind which was following them on the outward run, and ultimately were forced to earth owing to the exhaustion of the fuel supply during the homeward trip; the increased task imposed upon the motor, which had to battle hard to make headway, caused the fuel consumption per mile to exceed calculations.