BestLightNovel.com

The Student's Elements of Geology Part 16

The Student's Elements of Geology - BestLightNovel.com

You’re reading novel The Student's Elements of Geology Part 16 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

Sometimes we obtain evidence, without the aid of a change of level, of events which took place in pre-historic times. The combined labours, for example, of the antiquary, zoologist, and botanist have brought to light many monuments of the early inhabitants buried in peat-mosses in Denmark. Their geological age is determined by the fact that, not only the contemporaneous fresh-water and land sh.e.l.ls, but all the quadrupeds, found in the peat, agree specifically with those now inhabiting the same districts, or which are known to have been indigenous in Denmark within the memory of man. In the lower beds of peat (a deposit varying from 20 to 30 feet in thickness), weapons of stone accompany trunks of the Scotch fir, Pinus sylvestris. This peat may be referred to that part of the stone period for which Sir John Lubbock proposed the name of "Neolithic" in contradistinction to a still older era, termed by him "Paleolithic," and which will be described in the sequel. (Sir John Lubbock Pre-historic Times page 3 1865.) In the higher portions of the same Danish bogs, bronze implements are a.s.sociated with trunks and acorns of the common oak. It appears that the pine has never been a native of Denmark in historical times, and it seems to have given place to the oak about the time when articles and instruments of bronze superseded those of stone. It also appears that, at a still later period, the oak itself became scarce, and was nearly supplanted by the beech, a tree which now flourishes luxuriantly in Denmark. Again, at the still later epoch when the beech-tree abounded, tools of iron were introduced, and were gradually subst.i.tuted for those of bronze.

On the coasts of the Danish islands in the Baltic, certain mounds, called in those countries "Kjokken-modding," or "kitchen-middens," occur, consisting chiefly of the castaway sh.e.l.ls of the oyster, c.o.c.kle, periwinkle, and other eatable kinds of molluscs. The mounds are from three to ten feet high, and from 100 to 1000 feet in their longest diameter. They greatly resemble heaps of sh.e.l.ls formed by the Red Indians of North America along the eastern sh.o.r.es of the United States. In the old refuse-heaps, recently studied by the Danish antiquaries and naturalists with great skill and diligence, no implements of metal have ever been detected. All the knives, hatchets, and other tools, are of stone, horn, bone, or wood. With them are often intermixed fragments of rude pottery, charcoal and cinders, and the bones of quadrupeds on which the rude people fed. These bones belong to wild species still living in Europe, though some of them, like the beaver, have long been extirpated in Denmark. The only animal which they seem to have domesticated was the dog.

As there is an entire absence of metallic tools, these refuse-heaps are referred to the Neolithic division of the age of stone, which immediately preceded in Denmark the age of bronze. It appears that a race more advanced in civilisation, armed with weapons of that mixed metal, invaded Scandinavia, and ousted the aborigines.

LACUSTRINE HABITATIONS OF SWITZERLAND.

In Switzerland a different cla.s.s of monuments, ill.u.s.trating the successive ages of stone, bronze, and iron, has been of late years investigated with great success, and especially since 1854, in which year Dr. F. Keller explored near the sh.o.r.e at Meilen, in the bottom of the lake of Zurich, the ruins of an old village, originally built on numerous wooden piles, driven, at some unknown period, into the muddy bed of the lake. Since then a great many other localities, more than a hundred and fifty in all, have been detected of similar pile-dwellings, situated near the borders of the Swiss lakes, at points where the depth of water does not exceed 15 feet. (Bulletin de la Societie Vaudoise des Sciences Nat. tome 6 Lausanne 1860; and Antiquity of Man by the author chapter 2.) The superficial mud in such cases is filled with various articles, many hundreds of them being often dredged up from a very limited area. Thousands of piles, decayed at their upper extremities, are often met with still firmly fixed in the mud.

As the ages of stone, bronze, and iron merely indicate successive stages of civilisation, they may all have coexisted at once in different parts of the globe, and even in contiguous regions, among nations having little intercourse with each other. To make out, therefore, a distinct chronological series of monuments is only possible when our observations are confined to a limited district, such as Switzerland.

The relative antiquity of the pile-dwellings, which belong respectively to the ages of stone and bronze, is clearly ill.u.s.trated by the a.s.sociations of the tools with certain groups of animal remains. Where the tools are of stone, the castaway bones which served for the food of the ancient people are those of deer, the wild boar, and wild ox, which abounded when society was in the hunter state. But the bones of the later or bronze epoch were chiefly those of the domestic ox, goat, and pig, indicating progress in civilisation. Some villages of the stone age are of later date than others, and exhibit signs of an improved state of the arts. Among their relics are discovered carbonised grains of wheat and barley, and pieces of bread, proving that the cultivation of cereals had begun. In the same settlements, also, cloth, made of woven flax and straw, has been detected.

The pottery of the bronze age in Switzerland is of a finer texture, and more elegant in form, than that of the age of stone. At Nidau, on the lake of Bienne, articles of iron have also been discovered, so that this settlement was evidently not abandoned till that metal had come into use.

At La Thene, in the northern angle of the lake of Neufchatel, a great many articles of iron have been obtained, which in form and ornamentation are entirely different both from those of the bronze period and from those used by the Romans. Gaulish and Celtic coins have also been found there by MM. Schwab and Desor. They agree in character with remains, including many iron swords, which have been found at Tiefenau, near Berne, in ground supposed to have been a battle-field; and their date appears to have been anterior to the great Roman invasion of Northern Europe, though perhaps not long before that event. (Sir J.

Lubbock's Lecture, Royal Inst.i.tution February 27, 1863.) Coins, which sometimes occur in deposits of the age of iron, have never yet been found in formations of the ages of bronze or stone.

The period of bronze must have been one of foreign commerce, as tin, which enters into this metallic mixture in the proportion of about ten per cent to the copper, was obtained by the ancients chiefly from Cornwall. (Diodorus 5, 21, 22 and Sir H. James Note on Block of Tin dredged up in Falmouth Harbour. Royal Inst.i.tution of Cornwall 1863.) Very few human bones of the bronze period have been met with in the Danish peat, or in the Swiss lake-dwellings, and this scarcity is generally attributed by archaeologists to the custom of burning the dead, which prevailed in the age of bronze.

POST-PLIOCENE PERIOD.

From the foregoing observations we may infer that the ages of iron and bronze in Northern and Central Europe were preceded by a stone age, the Neolithic, referable to that division of the post-tertiary epoch which I have called Recent, when the mammalia as well as the other organic remains accompanying the stone implements were of living species. But memorials have of late been brought to light of a still older age of stone, for which, as above stated, the name Paleolithic has been proposed, when man was contemporary in Europe with the elephant and rhinoceros, and various other animals, of which many of the most conspicuous have long since died out.

REINDEER PERIOD IN SOUTH OF FRANCE.

In the larger number of the caves of Europe, as for example in those of England, Belgium, Germany, and many parts of France, the animal remains agree specifically with the fauna of this oldest division of the age of stone, or that to which belongs the drift of Amiens and Abbeville presently to be mentioned, containing flint implements of a very antique type. But there are some caves in the departments of Dordogne, Aude, and other parts of the south of France, which are believed by M. Lartet to be of intermediate date between the Paleolithic and Neolithic periods. To this intermediate era M. Lartet gave, in 1863, the name of the "reindeer period," because vast quant.i.ties of the bones and horns of that deer have been met with in the French caverns. In some cases separate plates of molars of the mammoth, and several teeth of the great Irish deer, Cervus megaceros, and of the cave-lion, Felis spelaea, have been found mixed up with cut and carved bones of reindeer. On one of these sculptured bones in the cave of Perigord, a rude representation of the mammoth, with its long curved tusks and covering of wool, occurs, which is regarded by M. Lartet as placing beyond all doubt the fact that the early inhabitants of these caves must have seen this species of elephant still living in France. The presence of the marmot, as well as the reindeer and some other northern animals, in these caverns seems to imply a colder climate than that of the Swiss lake-dwellings, in which no remains of reindeer have as yet been discovered. The absence of this last in the old lacustrine habitations of Switzerland is the more significant, because in a cave in the neighbourhood of the lake of Geneva, namely, that of Mont Saleve, bones of the reindeer occur with flint implements similar to those of the caverns of Dordogne and Perigord.

The state of the arts, as exemplified by the instruments found in these caverns of the reindeer period, is somewhat more advanced than that which characterises the tools of the Amiens drift, but is nevertheless more rude than that of the Swiss lake-dwellings. No metallic articles occur, and the stone hatchets are not ground after the fas.h.i.+on of celts; the needles of bone are shaped in a workmanlike style, having their eyes drilled with consummate skill.

The formations above alluded to, which are as yet but imperfectly known, may be cla.s.sed as belonging to the close of the Paleolithic era, of the monuments of which I am now about to treat.

ALLUVIAL DEPOSITS OF THE PALEOLITHIC AGE.

(FIGURE 87. Recent and Post-pliocene alluvial deposits.

1. Peat of the recent period.

2. Gravel of modern river.

2'. Loam of brick-earth (loess) of same age as 2, formed by inundations of the river.

3. Lower-level valley-gravel with extinct mammalia (Post-pliocene).

3'. Loam of same age.

4. Higher-level valley-gravel (Post-pliocene).

4'. Loam of same age.

5. Upland gravel of various kinds and periods, consisting in some places of unstratified boulder clay or glacial drift.

6. Older rocks.)

The alluvial and marine deposits of the Paleolithic age, the earliest to which any vestiges of man have yet been traced back, belong to a time when the physical geography of Europe differed in a marked degree from that now prevailing. In the Neolithic period, the valleys and rivers coincided almost entirely with those by which the present drainage of the land is effected, and the peat-mosses were the same as those now growing. The situation of the sh.e.l.l- mounds and lake-dwellings above alluded to is such as to imply that the topography of the districts where they are observed has not subsequently undergone any material alteration. Whereas we no sooner examine the Post- pliocene formations, in which the remains of so many extinct mammalia are found, than we at once perceive a more decided discrepancy between the former and present outline of the surface. Since those deposits originated, changes of considerable magnitude have been effected in the depth and width of many valleys, as also in the direction of the superficial and subterranean drainage, and, as is manifest near the sea-coast, in the relative position of land and water. In Figure 87 an ideal section is given, ill.u.s.trating the different position which the Recent and Post-pliocene alluvial deposits occupy in many European valleys.

The peat, No. 1, has been formed in a low part of the modern alluvial plain, in parts of which gravel No. 2 of the recent period is seen. Over this gravel the loam or fine sediment 2' has in many places been deposited by the river during floods which covered nearly the whole alluvial plain.

No. 3 represents an older alluvium, composed of sand and gravel, formed before the valley had been excavated to its present depth. It contains the remains of fluviatile sh.e.l.ls of living species a.s.sociated with the bones of mammalia, in part of recent, and in part of extinct species. Among the latter, the mammoth (E. primigenius) and the Siberian rhinoceros (R. tichorhinus) are the most common in Europe. No. 3' is a remnant of the loam or brick-earth by which No. 3 was overspread. No. 4 is a still older and more elevated terrace, similar in its composition and organic remains to No. 3, and covered in like manner with its inundation-mud, 4'. Sometimes the valley-gravels of older date are entirely missing, or there is only one, and occasionally there are more than two, marking as many successive stages in the excavation of the valley. They usually occur at heights varying from 10 to 100 feet, sometimes on the right and sometimes on the left side of the existing river-plain, but rarely in great strength on exactly opposite sides of the valley.

Among the genera of extinct quadrupeds most frequently met with in England, France, Germany, and other parts of Europe, are the elephant, rhinoceros, hippopotamus, horse, great Irish deer, bear, tiger, and hyaena. In the peat, No.

1 (Figure 87), and in the more modern gravel and silt (No. 2), works of art of the ages of iron and bronze, and of the later or Neolithic stone period, already described, are met with. In the more ancient or Paleolithic gravels, 3 and 4, there have been found of late years in several valleys in France and England-- as, for example, in those of the Seine and Somme, and of the Thames and Ouse, near Bedford-- stone implements of a rude type, showing that man coexisted in those districts with the mammoth and other extinct quadrupeds of the genera above enumerated. In 1847, M. Boucher de Perthes observed in an ancient alluvium at Abbeville, in Picardy, the bones of extinct mammalia a.s.sociated in such a manner with flint implements of a rude type as to lead him to infer that both the organic remains and the works of art were referable to one and the same period. This inference was soon after confirmed by Mr. Prestwich, who found in 1859 a flint tool in situ in the same stratum at Amiens that contained the remains of extinct mammalia.

The flint implements found at Abbeville and Amiens are most of them considered to be hatchets and spear-heads, and are different from those commonly called "celts." These celts, so often found in the recent formations, have a more regular oblong shape, the result of grinding, by which also a sharp edge has been given to them. The Abbeville tools found in gravel at different levels, as in Nos. 3 and 4, Figure 87, in which bones of the elephant, rhinoceros, and other extinct mammalia occur, are always unground, having evidently been brought into their present form simply by the chipping off of fragments of flint by repeated blows, such as could be given by a stone hammer.

Some of them are oval, others of a spear-headed form, no two exactly alike, and yet the greater number of each kind are obviously fas.h.i.+oned after the same general pattern. Their outer surface is often white, the original black flint having been discoloured and bleached by exposure to the air, or by the action of acids, as they lay in the gravel. They are most commonly stained of the same ochreous colour as the flints of the gravel in which they are imbedded.

Occasionally their antiquity is indicated not only by their colour but by superficial incrustations of carbonate of lime, or by dendrites formed of oxide of iron and manganese. The edges also of most of them are worn, sometimes by having been used as tools, or sometimes by having been rolled in the old river's bed. They are met with not only in the lower-level gravels, as in No. 3, Figure 87, but also in No. 4, or the higher gravels, as at St. Acheul, in the suburbs of Amiens, where the old alluvium lies at an elevation of about 100 feet above the level of the river Somme. At both levels fluviatile and land-sh.e.l.ls are met with in the loam as well as in the gravel, but there are no marine sh.e.l.ls a.s.sociated, except at Abbeville, in the lowest part of the gravel, near the sea, and a few feet only above the present high-water mark. Here with fossil sh.e.l.ls of living species are mingled the bones of Elephas primigenius and E. antiquus, Rhinoceros tichorhinus, Hippopotamus, Felis spelaea, Hyaena spelaea, reindeer, and many others, the bones accompanying the flint implements in such a manner as to show that both were buried in the old alluvium at the same period.

Nearly the entire skeleton of a rhinoceros was found at one point, namely, in the Menchecourt drift at Abbeville, the bones being in such juxtaposition as to show that the cartilage must have held them together at the time of their inhumation.

The general absence here and elsewhere of human bones from gravel and sand in which flint tools are discovered, may in some degree be due to the present limited extent of our researches. But it may also be presumed that when a hunter population, always scanty in numbers, ranged over this region, they were too wary to allow themselves to be overtaken by the floods which swept away many herbivorous animals from the low river-plains where they may have been pasturing or sleeping. Beasts of prey prowling about the same alluvial flats in search of food may also have been surprised more readily than the human tenant of the same region, to whom the signs of a coming tempest were better known.

INUNDATION-MUD OF RIVERS.-- BRICK-EARTH.-- FLUVIATILE LOAM, OR LOESS.

As a general rule, the fluviatile alluvia of different ages (Nos. 2, 3, 4, Figure 87) are severally made up of coa.r.s.e materials in their lower portions, and of fine silt or loam in their upper parts. For rivers are constantly s.h.i.+fting their position in the valley-plain, encroaching gradually on one bank, near which there is deep water, and deserting the other or opposite side, where the channel is growing shallower, being destined eventually to be converted into land. Where the current runs strongest, coa.r.s.e gravel is swept along, and where its velocity is slackened, first sand, and then only the finest mud, is thrown down. A thin film of this fine sediment is spread, during floods, over a wide area, on one, or sometimes on both sides, of the main stream, often reaching as far as the base of the bluffs or higher grounds which bound the valley. Of such a description are the well-known annual deposits of the Nile, to which Egypt owes its fertility. So thin are they, that the aggregate amount acc.u.mulated in a century is said rarely to exceed five inches, although in the course of thousands of years it has attained a vast thickness, the bottom not having been reached by borings extending to a depth of 60 feet towards the central parts of the valley. Everywhere it consists of the same h.o.m.ogeneous mud, dest.i.tute of stratification-- the only signs of successive acc.u.mulation being where the Nile has silted up its channel, or where the blown sands of the Libyan desert have invaded the plain, and given rise to alternate layers of sand and mud.

In European river-loams we occasionally observe isolated pebbles and angular pieces of stone which have been floated by ice to the places where they now occur; but no such coa.r.s.e materials are met with in the plains of Egypt.

In some parts of the valley of the Rhine the acc.u.mulation of similar loam, called in Germany "loess," has taken place on an enormous scale. Its colour is yellowish-grey, and very h.o.m.ogeneous; and Professor Bischoff has ascertained, by a.n.a.lysis, that it agrees in composition with the mud of the Nile. Although for the most part unstratified, it betrays in some places marks of stratification, especially where it contains calcareous concretions, or in its lower part where it rests on subjacent gravel and sand which alternate with each other near the junction. About a sixth part of the whole ma.s.s is composed of carbonate of lime, and there is usually an intermixture of fine quartzose and micaceous sand.

(FIGURE 88. Succinea elongata.)

Although this loam of the Rhine is unsolidified, it usually terminates where it has been undermined by running water in a vertical cliff, from the face of which sh.e.l.ls of terrestrial, fresh-water and amphibious mollusks project in relief.

These sh.e.l.ls do not imply the permanent sojourn of a body of fresh water on the spot, for the most aquatic of them, the Succinea, inhabits marshes and wet gra.s.sy meadows. The Succinea elongata (or S. oblongata), Figure 88, is very characteristic both of the loess of the Rhine and of some other European river- loams.

(FIGURE 89. Pupa muscorum (Linn.).)

(FIGURE 90. Helix hispida (Linn.) (plebeia).)

Among the land-sh.e.l.ls of the Rhenish loess, Helix hispida, Figure 90, and Pupa muscorum, Figure 89, are very common. Both the terrestrial and aquatic sh.e.l.ls are of most fragile and delicate structure, and yet they are almost invariably perfect and uninjured. They must have been broken to pieces had they been swept along by a violent inundation. Even the colour of some of the land-sh.e.l.ls, as that of Helix nemoralis, is occasionally preserved.

In parts of the valley of the Rhine, between Bingen and Basle, the fluviatile loam or loess now under consideration is several hundred feet thick, and contains here and there throughout that thickness land and amphibious sh.e.l.ls. As it is seen in ma.s.ses fringing both sides of the great plain, and as occasionally remnants of it occur in the centre of the valley, forming hills several hundred feet in height, it seems necessary to suppose, first, a time when it slowly acc.u.mulated; and secondly, a later period, when large portions of it were removed, or when the original valley, which had been partially filled up with it, was re-excavated.

Such changes may have been brought about by a great movement of oscillation, consisting first of a general depression of the land, and then of a gradual re- elevation of the same. The amount of continental depression which first took place in the interior, must be imagined to have exceeded that of the region near the sea, in which case the higher part of the great valley would have its alluvial plain gradually raised by an acc.u.mulation of sediment, which would only cease when the subsidence of the land was at an end. If the direction of the movement was then reversed, and, during the re-elevation of the continent, the inland region nearest the mountains should rise more rapidly than that near the coast, the river would acquire a denuding power sufficient to enable it to sweep away gradually nearly all the loam and gravel with which parts of its basin had been filled up. Terraces and hillocks of mud and sand would then alone remain to attest the various levels at which the river had thrown down and afterwards removed alluvial matter.

CAVERN DEPOSITS CONTAINING HUMAN REMAINS AND BONES OF EXTINCT ANIMALS.

In England, and in almost all countries where limestone rocks abound, caverns are found, usually consisting of cavities of large dimensions, connected together by low, narrow, and sometimes torturous galleries or tunnels. These subterranean vaults are usually filled in part with mud, pebbles, and breccia, in which bones occur belonging to the same a.s.semblage of animals as those characterising the Post-pliocene alluvia above described. Some of these bones are referable to extinct and others to living species, and they are occasionally intermingled, as in the valley-gravels, with implements of one or other of the great divisions of the stone age, and these are not unfrequently accompanied by human bones, which are much more common in cavern deposits than in valley- alluvium.

Each suite of caverns, and the pa.s.sages by which they communicate the one with the other, afford memorials to the geologist of successive phases through which they must have pa.s.sed. First, there was a period when the carbonate of lime was carried out gradually by springs; secondly, an era when engulfed rivers or occasional floods swept organic and inorganic debris into the subterranean hollows previously formed; and thirdly, there were such changes in the configuration of the region as caused the engulfed rivers to be turned into new channels, and springs to be dried up, after which the cave-mud, breccia, gravel, and fossil bones would bear the same kind of relation to the existing drainage of the country as the older valley-drifts with their extinct mammalian remains and works of art bear to the present rivers and alluvial plains.

The quarrying away of large ma.s.ses of Carboniferous and Devonian limestone, near Liege, in Belgium, has afforded the geologist magnificent sections of some of these caverns, and the former communication of cavities in the interior of the rocks with the old surface of the country by means of vertical or oblique fissures, has been demonstrated in places where it would not otherwise have been suspected, so completely have the upper extremities of these fissures been concealed by superficial drift, while their lower ends, which extended into the roofs of the caves, are masked by stalact.i.tic incrustations.

The origin of the stalact.i.te is thus explained by the eminent chemist Liebig.

Mould or humus, being acted on by moisture and air, evolves carbonic acid, which is dissolved by rain. The rain-water, thus impregnated, permeates the porous limestone, dissolves a portion of it, and afterwards, when the excess of carbonic acid evaporates in the caverns, parts with the calcareous matter, and forms stalact.i.te. Even while caverns are still liable to be occasionally flooded such calcareous incrustations acc.u.mulate, but it is generally when they are no longer in the line of drainage that a solid floor of hard stalagmite is formed on the bottom.

The late Dr. Schmerling examined forty caves near Liege, and found in all of them the remains of the same fauna, comprising the mammoth, tichorhine rhinoceros, cave-bear, cave-hyaena, cave-lion, and many others, some of extinct and some of living species, and in all of them flint implements. In four or five caves only parts of human skeletons were met with, comprising sometimes skulls with a few other bones, sometimes nearly every part of the skeleton except the skull. In one of the caves, that of Engihoul, where Schmerling had found the remains of at least three human individuals, they were mingled in such a manner with bones of extinct mammalia, as to leave no doubt on his mind (in 1833) of man having co-existed with them.

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Student's Elements of Geology Part 16 summary

You're reading The Student's Elements of Geology. This manga has been translated by Updating. Author(s): Charles Lyell. Already has 540 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com