A Treatise on Anatomy, Physiology, and Hygiene - BestLightNovel.com
You’re reading novel A Treatise on Anatomy, Physiology, and Hygiene Part 30 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
_Observations._ 1st. An exertion of any organ beyond its powers, induces weakness that will disturb the nutrition of the part that is called into action; and it recovers its energy more slowly in proportion to the excess of the exertion. The function of the organ may be totally and permanently destroyed, if the exertion is extremely violent. We sometimes see palsy produced in a muscle simply by the effort to raise too great a weight. The sight is impaired, and total blindness may be produced, by exposure to light too strong or too constant. The mind may be deranged, or idiocy may follow the excess of study or the over-tasking of the brain.
2d. When the function of an organ is permanently impaired or destroyed by over-exertion, the nutrition of the part is rendered insufficient, or is entirely arrested; and then the absorbents remove it wholly or partially, as they do every thing that is no longer useful. Thus, in palsied patients, a few years after the attack, we often find scarce any trace of the palsied muscles remaining; they are reduced almost to simple cellular tissue. The condition of the calf of the leg, in a person having a club-foot, is a familiar proof of this.
460. _The blood may be made impure, by the chyle being deficient in quant.i.ty or defective in quality._ This state of the chyle may be produced by the food being improper in quant.i.ty or quality, or by its being taken in an improper manner, at an improper time, and when the system is not prepared for it. The remedy for impure blood produced in any of these ways is to correct the injudicious method of using food.
(See Chapters XV. and XVI.)
459. How does impure blood affect the brain? What is the effect when any organ is exerted beyond its powers? What is the effect when an organ is permanently impaired? 460. How may the blood become impure?
461. _The blood may also be rendered impure, by not supplying it with oxygen in the lungs, and by the carbon not being eliminated from the system through this channel._ The remedy for "impurities of the blood," produced in this manner, would be, to carefully reduce to practice the directions in the chapters on the hygiene of the respiratory organs, relative to the free movements of the ribs and diaphragm, and the proper ventilation of rooms.
462. _A retention of the waste products of the skin produces impure blood._ When the vessels of the skin, by which the waste, useless material is eliminated from the system, have become inactive by improper and inadequate clothing, or by a want of cleanliness, the dead, injurious atoms of matter are retained in the circulatory vessels. The only successful method of purifying the blood and restoring health when this condition exists, is to observe the directions given relative to clothing and bathing. (See Chapters x.x.xIII. and x.x.xIV.)
_Observation._ If the blood has become "impure," or "loaded with humors," (an idea generally prevalent,) it is not and cannot be "purified" by taking patent pills, powders, drops, &c. But, on the contrary, by observing the suggestions in the preceding paragraphs, the blood can be freed of its impurities, and, what is of greater importance, such "injurious humors" will be prevented.
461. Mention another means by which the blood may be made impure. How remedied? 462. What is the effect of want of cleanliness upon the blood? What is said respecting "humors" in the blood?
[Ill.u.s.tration: Fig. 88. A front view of the organs within the chest and abdomen. 1, 1, 1, 1, The muscles of the chest. 2, 2, 2, 2, The ribs. 3, 3, 3, The upper, middle, and lower lobes of the right lung. 4, 4, The lobes of the left lung. 5, The right ventricle of the heart. 6, The left ventricle. 7, The right auricle of the heart. 8, The left auricle. 9, The pulmonary artery. 10, The aorta. 11, The vena cava descendens. 12, The trachea. 13, The oesophagus. 14, 14, 14, 14, The pleura. 15, 15, 15, The diaphragm. 16, 16, The right and left lobe of the liver. 17, The gall-cyst. 18, The stomach. 26, The spleen. 19, 19, The duodenum. 20, The ascending colon. 21, The transverse colon. 25, The descending colon. 22, 22, 22, 22, The small intestine. 23, 23, The abdominal walls turned down.
24, The thoracic duct, opening into the left subclavian vein, (27.)]
CHAPTER XXIII.
THE RESPIRATORY ORGANS.
463. The nutrient portion of the food is poured into the left subclavian vein, (24, 27, fig. 88,) at the lower part of the neck, and is carried to the right cavities of the heart. The fluid in these cavities consists of the chyle incorporated with the impure blood.
Neither of these two elements is fitted to promote the growth or repair the waste of the body. They must be subjected to a process, by which the first can be converted into blood, and the second freed of its carbonic acid gas and water. This is effected by the _Respiratory Organs_.
ANATOMY OF THE RESPIRATORY ORGANS.
464. The RESPIRATORY ORGANS are the _Lungs_, (lights,) the _Trache-a_, (windpipe,) the _Bronchi-a_, (subdivisions of the trachea,) and the _Air-Vesi-cles_, (air-cells at the extremities of the bronchia.) The _Dia-phragm_, (midriff,) _Ribs_, and several _Muscles_, also aid in the respiratory process.
465. The LUNGS are conical organs, one on each side of the chest, embracing the heart, (fig. 88,) and separated from each other by a membranous part.i.tion. The color of the lungs is a pinkish gray, mottled, and variously marked with black. Each lung is divided into lobes, by a long and deep fissure, which extends from the posterior surface of the upper part of the organ, downward and forward, nearly to the anterior angle of the base. In the right lung, the upper lobe is subdivided by a second fissure. This lung is larger and shorter than the left. It has three lobes, while the left has only two.
463. What fluids are conveyed into the right cavities of the heart?
What is necessary before they can be adapted to the wants of the body?
By what organs are these changes effected? 464-474. _Give the anatomy of the respiratory organs._ 464. Name the respiratory organs. What organs also aid in the respiratory process? 465. Describe the lungs.
[Ill.u.s.tration: Fig. 89. A back view of the heart and lungs. The posterior walls of the chest are removed. 1, 2, 3, The upper, middle, and lower lobes of the right lung. 8, 9, 10, The two lobes of the left lung. 6, 13, The diaphragm. 7, 7, 14, 14, The pleura that lines the ribs. 4, 11, The pleura that lines the mediastine. 5, 12, 12, The portion of the pleura that covers the diaphragm. 15, The trachea, 16, The larynx. 19, 19, The right and left bronchia. 20, The heart. 29, The lower part of the spinal column.]
Explain fig. 89.
466. Each lung is enclosed, and its structure maintained by a serous membrane, called the _pleura_, which invests it as far as the root, and is thence reflected upon the walls of the chest. The lungs, however, are on the outside of the pleura, in the same way as the head is on the outside of a cap doubled upon itself. The reflected pleur in the middle of the thorax form a part.i.tion, which divides the chest into two cavities. This part.i.tion is called the _me-di-as-tinum_.
[Ill.u.s.tration: Fig. 90. The heart and lungs removed from the chest, and the lungs freed from all other attachments. 1, The right auricle of the heart. 2, The superior vena cava. 3, The inferior vena cava. 4, The right ventricle. 5, The pulmonary artery issuing from it. _a_, _a_, The pulmonary artery, (right and left,) entering the lungs. _b_, _b_, Bronchia, or air-tubes, entering the lungs. _v_, _v_, Pulmonary veins, issuing from the lungs. 6, The left auricle. 7, The left ventricle. 8, The aorta. 9, The upper lobe of the left lung. 10, Its lower lobe. 11, The upper lobe of the right lung. 12, The middle lobe. 13, The lower lobe.]
_Observation._ When this membrane that covers the lungs, and also lines the chest, is inflamed, the disease is called "pleurisy."
466. By what are the lungs enclosed? What is the relative position of the lungs and pleura? What is said of the reflected pleur? Explain fig. 90. What part of the lungs is affected in pleurisy?
467. The lungs are composed of the ramifications of the bronchial tubes, which terminate in the bronchial cells, (_air-cells_,) lymphatics, and the divisions of the pulmonary artery and veins. All of these are connected by cellular tissue, which const.i.tutes the _pa-renchy-ma_. Each lung is retained in its place by its _root_, which is formed by the pulmonary arteries, pulmonary veins, and bronchial tubes, together with the bronchial vessels and pulmonary nerves.
468. The TRACHEA extends from the larynx, of which it is a continuation, to the third dorsal vertebra, where it divides into two parts, called bronchia. It lies anterior to the spinal column, from which it is separated by the oesophagus.
469. The BRONCHIA proceed from the bifurcation, or division of the trachea, to their corresponding lungs. Upon entering the lungs, they divide into two branches, and each branch divides and subdivides, and ultimately terminates in small sacs, or cells, of various sizes, from the twentieth to the hundredth of an inch in diameter. So numerous are these bronchial or air-cells, that the aggregate extent of their lining membrane in man has been computed to exceed a surface of 20,000 square inches, and Munro states that it is thirty times the surface of the human body.
_Ill.u.s.tration._ The trachea may be compared to the trunk of a tree; the bronchia, to two large branches; the subdivisions of the bronchia, to the branchlets and twigs; the air-cells, to the buds seen on the twigs in the spring.
470. The AIR-VESICLES and small bronchial tubes compose the largest portions of the lungs. These, when once inflated, contain air, under all circ.u.mstances, which renders their specific gravity much less than water; hence the vulgar term, _lights_, for these organs. The trachea and bronchial tubes are lined by mucous membrane. The structure of this membrane is such, that it will bear the presence of pure air without detriment, but not of other substances.
467. Of what are the lungs composed? How retained in place? 468. Where is the trachea situated? 469. Describe the bronchia. What is the aggregate extent of the lining membrane of the air-cells? To what may the trachea and its branches be compared? 470. What is said of the air-cells and bronchial tubes?
[Ill.u.s.tration: Fig. 91. A representation of the larynx, trachea, bronchia, and air-cells. 1, 1, 1, An outline of the right lung. 2, 2, 2, An outline of the left lung. 3, The larynx 4, The trachea. 5, The right bronchial tube. 6, The left bronchial tube. 7, 7, 7, 8, 8, 8, The subdivisions of the right and left bronchial tubes. 9, 9, 9, 9, 9, 9, Air-cells.]
What membrane lines the trachea and its branches? What is peculiar in its structure? What does fig. 91 represent?
_Observation._ The structure of the trachea and lungs may be ill.u.s.trated, by taking these parts of a calf or sheep and inflating the air-vesicles by forcing air into the windpipe with a pipe or quill. The internal structure may then be seen by opening the different parts.