Beacon Lights of History - BestLightNovel.com
You’re reading novel Beacon Lights of History Volume Xiv Part 16 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
Aluminium, the now well-known valuable metal, present in clay, bauxite, and a variety of other mineral substances, is electrolytically deposited from a bath of alumina obtained by dissolving bauxite either in pota.s.sium fluoride or in cryolite. Aluminium is now coming into extended use in the construction of long-distance electric power transmission lines.
Caustic soda and bleaching salt are produced by the electrolytic decomposition of brine (chloride of sodium). The chlorine liberated at the anode is employed in the manufacture of bleaching-salt, and the sodium is liberated at a mercury cathode, with which it at once enters into combination as an alloy. On throwing this alloy into water the sodium is liberated as caustic soda.
Carborundum, a silicide of carbon, is a valuable substance produced by the action of the heat of an electric furnace on an intimate mixture of carbon and sand. It has an extensive use as an abrasive for grinding and polis.h.i.+ng.
Artificial graphite is another product produced by the long-continued action of the heat of the electric furnace on carbon under certain conditions.
According to reports from the United States Geological Survey, the graphite works at Niagara Falls produced in 1901, 2,500,000 lbs. of artificial graphite, valued at $119,000. This was an increase from 860,270 lbs., valued at $69,860 for 1900, and from 162,382 lbs., valued at $10,140, in 1897, the first year of its commercial production. In 1901, more than half of the output was in the form of graphitized electrodes employed in the production of caustic soda and bleaching salt, and in other electrolytic processes.
The Niagara Falls power transmission system stands to-day as a magnificent testimonial to the genius of Faraday, and as a living monument of the varied and valuable gifts his researches have bestowed upon mankind. For here we have not only the dynamo, motors, and transformers that he gave freely to the world, not only the alternating-current transformer, and the system of transmission of power, but we even find that the princ.i.p.al consumers of the enormous electric power produced are employing it in carrying on some of the many processes in electro-chemistry, a science that he had done so much to advance.
Among some of the surprises electro-chemistry may have in store for the world in the comparatively near future, may be a nearer approach to a mastery of the laws which govern the combination of elementary substances when under the influence of plant-life. If these laws ever become so well known that man is able to form hi his laboratory the various food products that are now formed naturally in plant organisms, such a revolution would be wrought that the work of the agriculturist would be largely transferred to the electro-chemist. Some little has already been done in the direct formation of some vegetable substances, such as camphor, the peculiar flavoring substance present in the vanilla bean, and in many other substances. Should such discoveries ever reach to the direct formation of some food staple, the wide-reaching importance and significance of the discovery would be almost beyond comprehension.
But, while the direct electro-synthetic formation of food products is yet to be accomplished on a practical scale, the problem appears to be nearing actual solution in an indirect manner. It has been known since the time of Cavendish, in 1785, that small quant.i.ties of nitric acid could be formed directly from the nitrogen and oxygen of the atmosphere by the pa.s.sage of electric sparks; but heretofore, the quant.i.ty so found has been too small to be of any commercial value. Quite recently, however, one of the electro-chemical companies at Niagara Falls has succeeded in commercially solving the important problem of the fixation of the nitrogen of the atmosphere; it being claimed that the cost of thus producing one ton of commercial nitric acid, of a market value of over eighty dollars, does not greatly exceed twenty dollars. Since sodium nitrate can readily be produced by the process, and its value as a fertilizer of wheat-fields is too well known to need comment, there would thus, to a limited extent, be indirectly solved the electro-chemical production of food staples.
Faraday's high rank as an investigator in the domain of natural science was fully recognized by the learned societies of his time, by admission into their fellows.h.i.+ps. As early as 1824, he was honored by the Royal Society of London by election as one of its Fellows, and in 1825 he had become a member of the Royal Inst.i.tution. It is recorded of the great philosopher that the members.h.i.+p in the Royal Inst.i.tution was the only one which he personally sought; all others came unsought, but they came so rapidly from all portions of the globe that in 1844 he was a member of no less than seventy of the leading learned societies of the world.
Ries, the German electrician, so well known in connection with his invention of the speaking telephone, addressed Faraday as "Professor Michael Faraday, Member of all the Academies." Besides his members.h.i.+p in the learned societies, Faraday received numerous degrees from the colleges and universities of his time. Among some of these are the following: The University of Prague, the degree of Ph.D.; Oxford, the degree of D.C.L.; and Cambridge, the degree of LL.D. He also received numerous medals of honor, and was offered the Presidency of the Royal Society, which, however, he declined, as he did also a knighthood proffered by the government of England. Faraday died on the 25th of August, 1867, after a long, well-spent, useful life.
We have thus briefly traced some of the more important discoveries of Michael Faraday. Many have necessarily been pa.s.sed by, but what we have given are more than sufficient to stamp him as a great philosopher and investigator. Speaking of Faraday in this connection, Professor Tyndall says: "Take him for all in all, I think it will be conceded that Michael Faraday is the greatest experimental philosopher the world has ever seen; and I will add the opinion that the progress of future research will tend not to diminish or decrease, but to enhance and glorify, the labors of this mighty investigator."
AUTHORITIES.
Experimental Researches in Electricity. By Michael Faraday. From the Philosophical Transactions.
Abstracts of the Philosophical Transactions from 1800 to 1837.
Faraday's Experimental Researches in Electricity and Magnetism. 3 vols.
Life and Letters of Faraday. By Dr. Bence Jones.
Michael Faraday. By J.H. Gladstone.
Students' Text-Book of Electricity. By Henry M. Noad. Revised by W.H.
Preece.
Michael Faraday. By John Tyndall.
Pioneers of Electricity. By J. Munro.
Dynamo-Electric Machinery. By Silva.n.u.s P. Thompson.
A Dictionary of Electrical Words, Terms, and Phrases. By Edwin J.
Houston.
Electricity and Magnetism. By Edwin J. Houston.
Electricity One Hundred Years Ago and To-Day. By Edwin J. Houston.
Magnetism; Electro-Technical Series. By Edwin J. Houston and Arthur E.
Kennelly.
Electro-Dynamic Machinery. By Edwin J. Houston and A. E. Kennelly.
RUDOLF VIRCHOW.
1821-1902.
MEDICINE AND SURGERY.
BY FRANK P. FOSTER, M.D.
Stagnation was the state of medicine when the Nineteenth Century opened.
It was only three years before that Jenner had announced and demonstrated the protective efficacy of vaccination against small-pox.
His teaching, in spite of the vehement cavillings of the "antis" of his day, gained credence readily, and vaccination speedily became recognized and was constantly resorted to, but hardly any attempt at perfecting the practice was made until after more than fifty years had elapsed. His discovery--or, rather, his proof of the truth of a rustic tradition--fell like a pebble into the doldrums; the ripple soon subsided, and n.o.body was encouraged to start another. At the present time such an announcement would be promptly followed by investigations leading up to such doctrines as that of the attenuation of viruses and that of ant.i.toxines. But the times were not ripe for anything of that sort; medicine reposed on tradition, or at best gave itself only to such plausibilities in the way of innovation as were cleverly advocated.
Physicians strove not to advance the healing art; as individuals, they were content to rely on their manners, their tact, and their a.s.sumption of wisdom. In short, the body medical was in a state of suspended animation, possessed of a mere vegetative existence.
The Humoral pathology, or that doctrine of the nature of disease which ascribed all ailments to excess, deficiency, or ill "concoction" of some one of the four humors (yellow and black bile, blood, and phlegm), had not yet lost its hold on men's convictions, or at least not further than to make them look upon exposure to cold and errors of diet as amply explanatory of all diseases not plainly infectious. The medical writers who were most revered were those who busied themselves with nosology; that is to say, the naming and cla.s.sifying of diseases. Wonderful were the onomatological feats performed by some of these men, and most diverse and grotesque were the data on which they founded their cla.s.sifications. To label a disease was high art; to cure it was something that Providence might or might not allow. In the treatment of "sthenic" acute diseases (meaning those accompanied by excitement and high fever), blood-letting, mercury given to the point of salivation, antimony, and opium, together with starvation (all included under the euphemism of "lowering measures"), were the means universally resorted to and reputed "sheet anchors." Some advance had been made from the times when disease had been looked upon as an ent.i.ty to be exorcised, but it was still so far regarded as a material thing that it was to be starved out.
But the century was not out of its second decade when signs of an awakening from this lethargy began to show themselves. The first steps, naturally, were along preparatory lines, and for those we are largely indebted to the physicists, the chemists, and the botanists. Gross anatomy became better known, owing for the most part to more enlightened legislation on the subject of the dissection of the human body; minute anatomy (histology) sprang into existence as the result of improvements of the compound microscope. Physiology took on something of the experimental; and medication was rendered far less gross and repulsive by the isolation of the active principles of medicinal plants. But it was long after all this that the telling strides were taken. Up to within the memory of many men who are now living, "peritonitis" tortured its victims to death, said "peritonitis" being often interpreted as a manifestation of rheumatism, for example, and no well-directed interposition was attempted against it, whereas we now know perfectly well that the vast majority of cases of peritonitis are due to local septic poisoning and for the most part quite readily remediable by the removal (with a minimum of danger) of the organ from which such poisoning arises--almost always the vermiform appendix. "Appendicitis,"
of which we hear so much nowadays, is no new disease; it is simply the "peritonitis" that killed so many people in former times. But while no well-informed person would now maintain that this disease was a new one, there are many, and those, too, among the best instructed, who find it difficult to avoid the conclusion that, if not new, it must at least be of far more frequent occurrence than formerly. It must be borne in mind, however, that in the great majority of instances in past years it ended spontaneously in recovery and was forgotten.
Two features of the progress in medicine in the Nineteenth Century, negative as they may seem to have been, were undoubtedly potent in the promotion of advance. They were the recognition of the fact that many dangerous diseases are self-limited, and the experiment of the so-called "expectant treatment." The result of the first of them was to teach men to desist from futile attempts to _cure_ the self-limited diseases, in the sense of cutting them short in their course, and the "expectant treatment" followed as a natural consequence. It was a method of managing disease rather than attempting to cure it. There was no interference save to promote the patient's comfort, to nourish him as thoroughly as might be without unduly taxing his powers, and to meet complications as they arose. It was stooping to conquer, perhaps, but it was a policy that conduced greatly to the well-being of the sick, improved their chances of recovery, and enabled physicians to study disease more accurately by reason of its course not being rendered irregular by meddlesome medication. It has never been dropped, and it never will be, save as such directly curative agents as the ant.i.toxines are made available.
In the early part of the century, except for gross anatomy and operative surgery, medicine was taught almost wholly, so far as the schools were concerned, by means of didactic lectures. The "drawing" capacity of a professor was proportionate rather to his rhetorical powers and to the persuasiveness with which he inculcated the views peculiar to himself than to the amount of real information that he conveyed to the students.
Although the apprentice system--for that was what the practice of students' attaching themselves to individual pract.i.tioners, whom they called their preceptors, virtually amounted to--in many instances made up more or less completely for the lack of systematic clinical teaching, yet in the great majority of cases it amounted to little more than the preceptor's allowing the student the use of his library and occasionally examining into the latter's diligence and intelligence, in return for which he, the preceptor, required an annual fee and exacted from the student such minor services as his proficiency enabled him to render. It is true the students "walked" the hospitals, drinking in some great man's utterances, but they did it in droves, not a moiety of them being able to get a good look at a patient, unless it was such a pa.s.sing glance as might tell them that the patient was jaundiced. By clinical teaching we understand teaching, not in glittering generalities, but in the concrete, either at the bedside, as the word _clinical_ originally implied, or at least with the patient actually present to ill.u.s.trate in his person the professor's descriptions and the success or failure of the treatment employed. The clinic is now firmly established, and has been for years, but it was long before this grand result was attained.
Experimental methods of study gradually came into vogue, particularly in the domain of physiology. In this sphere Dr. William Beaumont, of the United States Army, was a pioneer. His historic experiments on Alexis St. Martin, a soldier who had been wounded in the stomach and recovered with a permanent opening into that organ, will ever rank among the most important of the early experimental studies of digestion. It was not long before Claude Bernard extended similar inquiries to the other functions of the body, notably those of the nervous system; and since his time there has been a long array of brilliant investigators of physiology and of other branches of science tributary to medicine.
Experiments on living animals were almost the only means of carrying on these researches. In the early days the animals employed were doubtless put to a great deal of pain--perhaps in many instances to unnecessary suffering--and an altogether laudable feeling of humanity has led good people to band themselves together for the purpose of putting a stop to vivisection, or at least of greatly restricting the practice and of freeing it from all avoidable infliction of pain. These praiseworthy efforts have in some instances been carried so far, unfortunately, as to seriously hamper scientific investigation--investigation which has for its object the alleviation of human suffering and the saving of human life. We may earnestly deprecate and strive to prevent wanton reiteration of painful experiments for purposes of demonstrating anew that which is unquestioned, and we may resort to all possible means to render necessary experiments free from actual pain (from the anguish of trepidation we can seldom relieve the poor animals), but let us not block the wheels of scientific progress.
At the dawn of the Nineteenth Century, to examine a sick person's pulse, to inspect his tongue, to observe his breathing, to interrogate his skin by our sense of touch, and to try to make his statements and those of his friends fit in with some tenable theory of the nature of his ailment, were about all we could do. Possibly it was because he realized to an uncommon degree the tremendous impediment of this narrow limitation that Samuel Hahnemann, the founder of h.o.m.oeopathy, cut the Gordian knot in sheer rebelliousness, and proclaimed, as he virtually did, that a diagnosis was not necessary to the successful treatment of disease, but that one only needed to know empirically how to subdue symptoms, meaning mainly, if not solely, what we term "subjective"
symptoms--those of which the patient complains, as opposed to those that we ourselves discover. But the physical examination of the sick, before extremely meagre in its sphere and restricted in its possibilities, was destined to expand before many years into the minute and positive physical diagnosis of the present day.
In the year 1816 a French physician, Rene Theophile Hyacinthe Laennec, achieved undying fame by publis.h.i.+ng to the world an account of his labors in the application of mediate auscultation and of percussion to the diagnosis of the diseases of the chest. It is true that no less a personage than the "Father of Medicine," Hippocrates, is reputed to have practised succussion as a means of diagnosis; that is, the shaking of a patient, as one would shake a cask, to ascertain by the occurrence or non-occurrence of a splas.h.i.+ng sound if the person's pleural cavity was distended partly with water and partly with air. It is probable that Hippocrates and many others after him carried the physical examination of the chest still further, for it is difficult to imagine, for example, that so simple a device as that of thumping a part.i.tion to make out the situation of a joist by the sound evoked should not early have been applied to the human chest. But, be this as it may, to Laennec belongs the great credit of having laid a substantial foundation for the physical diagnosis of the present time, and, more than for laying a foundation, for constructing a fairly complete edifice. He who should now undertake to practise general medicine without having first made himself proficient in the detection and interpretation of the sounds elicited by auscultation and percussion in diseases of the heart and lungs would foredoom himself to failure.
It was not until many years later, early in the second half of the century, that the clinical thermometer came into general use, but it soon showed most strikingly the superiority of the "instrument of precision" to the unaided senses of man. Who would think now of trying to estimate the height of a fever by laying his hand on the patient's skin, or who, even among the laity, would be satisfied with such a procedure? "Doubtless," said the present writer in a former publication ("New York Medical Journal," Dec. 29, 1900), "the use of the thermometer has occasionally given rise to needless alarm, but almost invariably it may be interpreted with great certainty. Often it dispels unnecessary anxiety as in a twinkling by its negative indication, and surely it is to be credited with being distinctly diagnostic in those diseases of which it has itself established the 'curve.'" By the thermometric "curve" of a disease is understood the general visual impression made by the graphic chart of a temperature record--the course of a zigzag line connecting the points indicated by the various individual observations.
Numerous other instruments of precision are now in constant use, among the most wonderful of which perhaps is the ophthalmoscope, whereby we are enabled to subject the retina and the intervening media of the eye to minute visual examination. There is not an organ of the body that is not now interrogated daily in the way of physical diagnosis, and we even examine separately the secretion of each of the two kidneys. In addition, there are mult.i.tudinous specific signs of which we were not long ago in complete ignorance. To cite only one of these, there is Widal's agglutination test, by which the bacteriologist can usually make a diagnosis of typhoid fever far in advance of the time at which it could otherwise be distinguished. The use of the Rontgen rays in diagnosis was one of the crowning achievements of the century, and now we seem about to enter upon a course of their successful employment in the treatment of disease--even some forms of cancer--as well as in its detection.
Beyond the vermin that infest the skin and the hair, tapeworm, and a few other intestinal worms, little if anything was known of morbific parasites before the Nineteenth Century; but the labors of Van Beneden, Kuchenmeister, Cobbold, Manson, Laveran, and others have now established the causal relations.h.i.+p between great numbers of animal parasites--gross and microscopic--and certain definite morbid states. This has led to a great increase in our knowledge of the connection between the parasites of the lower animals and grave disease in human beings, and on this knowledge rest many of the precautions that we are now able to take against the spread of such disease. From the consideration of animal parasites as the direct causes of disease, we naturally come to the contemplation of the subject of insects as the carriers of disease. The later years of the century have witnessed the demonstration of the fly's agency in the transmission of malignant pustule and typhoid fever, and that of certain mosquitoes in the conveyance of yellow fever and malarial disease. We now know that bad air (the original meaning of the word _malaria_) has nothing to do with fever and ague, and that swamps are not unwholesome if they are free from infected mosquitoes. The mosquito does not originate the malarial infection; it simply serves as the temporary host of the micro-organism (_Plasmodium malarioe_) which is the cause of the disease, having obtained its transient "guest" from some human being. Consequently, marshy districts that are full of mosquitoes are not malarious unless the mosquitoes are of the kinds capable of lodging the plasmodium, and unless there is or has recently been present in the neighborhood some person affected with malarial disease. Moreover, the most virulently malarious region is a safe place of residence for human beings, provided they protect themselves absolutely against the bite of the mosquito. This has been strikingly demonstrated in the case of the Roman Campagna.
From the disease-producing animal parasites we come now to those that are believed to be of vegetable nature. Under the general name of _bacteria_, there are mult.i.tudes of micro-organisms having pathogenic powers, each giving rise to some definite specific disease, and certain a.s.sociations of different bacteria causing particular morbid conditions.