Amusements in Mathematics - BestLightNovel.com
You’re reading novel Amusements in Mathematics Part 3 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
89.--ADDING THE DIGITS.
If I write the sum of money, 987, 5s. 4d., and add up the digits, they sum to 36. No digit has thus been used a second time in the amount or addition. This is the largest amount possible under the conditions. Now find the smallest possible amount, pounds, s.h.i.+llings, pence, and farthings being all represented. You need not use more of the nine digits than you choose, but no digit may be repeated throughout. The nought is not allowed.
90.--THE CENTURY PUZZLE.
Can you write 100 in the form of a mixed number, using all the nine digits once, and only once? The late distinguished French mathematician, Edouard Lucas, found seven different ways of doing it, and expressed his doubts as to there being any other ways. As a matter of fact there are just eleven ways and no more. Here is one of them, 91+5742/638. Nine of the other ways have similarly two figures in the integral part of the number, but the eleventh expression has only one figure there. Can the reader find this last form?
91.--MORE MIXED FRACTIONS.
When I first published my solution to the last puzzle, I was led to attempt the expression of all numbers in turn up to 100 by a mixed fraction containing all the nine digits. Here are twelve numbers for the reader to try his hand at: 13, 14, 15, 16, 18, 20, 27, 36, 40, 69, 72, 94. Use every one of the nine digits once, and only once, in every case.
92.--DIGITAL SQUARE NUMBERS.
Here are the nine digits so arranged that they form four square numbers: 9, 81, 324, 576. Now, can you put them all together so as to form a single square number--(I) the smallest possible, and (II) the largest possible?
93.--THE MYSTIC ELEVEN.
Can you find the largest possible number containing any nine of the ten digits (calling nought a digit) that can be divided by 11 without a remainder? Can you also find the smallest possible number produced in the same way that is divisible by 11? Here is an example, where the digit 5 has been omitted: 896743012. This number contains nine of the digits and is divisible by 11, but it is neither the largest nor the smallest number that will work.
94.--THE DIGITAL CENTURY.
1 2 3 4 5 6 7 8 9 = 100.
It is required to place arithmetical signs between the nine figures so that they shall equal 100. Of course, you must not alter the present numerical arrangement of the figures. Can you give a correct solution that employs (1) the fewest possible signs, and (2) the fewest possible separate strokes or dots of the pen? That is, it is necessary to use as few signs as possible, and those signs should be of the simplest form. The signs of addition and multiplication (+ and ) will thus count as two strokes, the sign of subtraction (-) as one stroke, the sign of division () as three, and so on.
95.--THE FOUR SEVENS.
[Ill.u.s.tration]
In the ill.u.s.tration Professor Rackbrane is seen demonstrating one of the little posers with which he is accustomed to entertain his cla.s.s. He believes that by taking his pupils off the beaten tracks he is the better able to secure their attention, and to induce original and ingenious methods of thought. He has, it will be seen, just shown how four 5's may be written with simple arithmetical signs so as to represent 100. Every juvenile reader will see at a glance that his example is quite correct. Now, what he wants you to do is this: Arrange four 7's (neither more nor less) with arithmetical signs so that they shall represent 100. If he had said we were to use four 9's we might at once have written 99+9/9, but the four 7's call for rather more ingenuity. Can you discover the little trick?
96.--THE DICE NUMBERS.
[Ill.u.s.tration]
I have a set of four dice, not marked with spots in the ordinary way, but with Arabic figures, as shown in the ill.u.s.tration. Each die, of course, bears the numbers 1 to 6. When put together they will form a good many, different numbers. As represented they make the number 1246. Now, if I make all the different four-figure numbers that are possible with these dice (never putting the same figure more than once in any number), what will they all add up to? You are allowed to turn the 6 upside down, so as to represent a 9. I do not ask, or expect, the reader to go to all the labour of writing out the full list of numbers and then adding them up. Life is not long enough for such wasted energy. Can you get at the answer in any other way?
VARIOUS ARITHMETICAL AND ALGEBRAICAL PROBLEMS.
"Variety's the very spice of life, That gives it all its flavour."
COWPER: _The Task._ 97.--THE SPOT ON THE TABLE.
A boy, recently home from school, wished to give his father an exhibition of his precocity. He pushed a large circular table into the corner of the room, as shown in the ill.u.s.tration, so that it touched both walls, and he then pointed to a spot of ink on the extreme edge.
[Ill.u.s.tration]
"Here is a little puzzle for you, pater," said the youth. "That spot is exactly eight inches from one wall and nine inches from the other. Can you tell me the diameter of the table without measuring it?"
The boy was overheard to tell a friend, "It fairly beat the guv'nor;" but his father is known to have remarked to a City acquaintance that he solved the thing in his head in a minute. I often wonder which spoke the truth.
98.--ACADEMIC COURTESIES.
In a certain mixed school, where a special feature was made of the inculcation of good manners, they had a curious rule on a.s.sembling every morning. There were twice as many girls as boys. Every girl made a bow to every other girl, to every boy, and to the teacher. Every boy made a bow to every other boy, to every girl, and to the teacher. In all there were nine hundred bows made in that model academy every morning. Now, can you say exactly how many boys there were in the school? If you are not very careful, you are likely to get a good deal out in your calculation.
99.--THE THIRTY-THREE PEARLS.
[Ill.u.s.tration]
"A man I know," said Teddy Nicholson at a certain family party, "possesses a string of thirty-three pearls. The middle pearl is the largest and best of all, and the others are so selected and arranged that, starting from one end, each successive pearl is worth 100 more than the preceding one, right up to the big pearl. From the other end the pearls increase in value by 150 up to the large pearl. The whole string is worth 65,000. What is the value of that large pearl?"
"Pearls and other articles of clothing," said Uncle Walter, when the price of the precious gem had been discovered, "remind me of Adam and Eve. Authorities, you may not know, differ as to the number of apples that were eaten by Adam and Eve. It is the opinion of some that Eve 8 (ate) and Adam 2 (too), a total of 10 only. But certain mathematicians have figured it out differently, and hold that Eve 8 and Adam a total of 16. Yet the most recent investigators think the above figures entirely wrong, for if Eve 8 and Adam 8 2, the total must be 90."
"Well," said Harry, "it seems to me that if there were giants in those days, probably Eve 8 1 and Adam 8 2, which would give a total of 163."
"I am not at all satisfied," said Maud. "It seems to me that if Eve 8 1 and Adam 8 1 2, they together consumed 893."
"I am sure you are all wrong," insisted Mr. Wilson, "for I consider that Eve 8 1 4 Adam, and Adam 8 1 2 4 Eve, so we get a total of 8,938."
"But, look here," broke in Herbert. "If Eve 8 1 4 Adam and Adam 8 1 2 4 2 oblige Eve, surely the total must have been 82,056!"
At this point Uncle Walter suggested that they might let the matter rest. He declared it to be clearly what mathematicians call an indeterminate problem.
100.--THE LABOURER'S PUZZLE.
Professor Rackbrane, during one of his rambles, chanced to come upon a man digging a deep hole.
"Good morning," he said. "How deep is that hole?"
"Guess," replied the labourer. "My height is exactly five feet ten inches."
"How much deeper are you going?" said the professor.
"I am going twice as deep," was the answer, "and then my head will be twice as far below ground as it is now above ground."
Rackbrane now asks if you could tell how deep that hole would be when finished.
101.--THE TRUSSES OF HAY.
Farmer Tompkins had five trusses of hay, which he told his man Hodge to weigh before delivering them to a customer. The stupid fellow weighed them two at a time in all possible ways, and informed his master that the weights in pounds were 110, 112, 113, 114, 115, 116, 117, 118, 120, and 121. Now, how was Farmer Tompkins to find out from these figures how much every one of the five trusses weighed singly? The reader may at first think that he ought to be told "which pair is which pair," or something of that sort, but it is quite unnecessary. Can you give the five correct weights?
102.--MR. GUBBINS IN A FOG.
Mr. Gubbins, a diligent man of business, was much inconvenienced by a London fog. The electric light happened to be out of order and he had to manage as best he could with two candles. His clerk a.s.sured him that though both were of the same length one candle would burn for four hours and the other for five hours. After he had been working some time he put the candles out as the fog had lifted, and he then noticed that what remained of one candle was exactly four times the length of what was left of the other.
When he got home that night Mr. Gubbins, who liked a good puzzle, said to himself, "Of course it is possible to work out just how long those two candles were burning to-day. I'll have a shot at it." But he soon found himself in a worse fog than the atmospheric one. Could you have a.s.sisted him in his dilemma? How long were the candles burning?
103.--PAINTING THE LAMP-POSTS.
Tim Murphy and Pat Donovan were engaged by the local authorities to paint the lamp-posts in a certain street. Tim, who was an early riser, arrived first on the job, and had painted three on the south side when Pat turned up and pointed out that Tim's contract was for the north side. So Tim started afresh on the north side and Pat continued on the south. When Pat had finished his side he went across the street and painted six posts for Tim, and then the job was finished. As there was an equal number of lamp-posts on each side of the street, the simple question is: Which man painted the more lamp-posts, and just how many more?
104.--CATCHING THE THIEF.
"Now, constable," said the defendant's counsel in cross-examination," you say that the prisoner was exactly twenty-seven steps ahead of you when you started to run after him?"
"Yes, sir."
"And you swear that he takes eight steps to your five?"
"That is so."
"Then I ask you, constable, as an intelligent man, to explain how you ever caught him, if that is the case?"
"Well, you see, I have got a longer stride. In fact, two of my steps are equal in length to five of the prisoner's. If you work it out, you will find that the number of steps I required would bring me exactly to the spot where I captured him."
Here the foreman of the jury asked for a few minutes to figure out the number of steps the constable must have taken. Can you also say how many steps the officer needed to catch the thief?
105.--THE PARISH COUNCIL ELECTION.
Here is an easy problem for the novice. At the last election of the parish council of t.i.ttlebury-in-the-Marsh there were twenty-three candidates for nine seats. Each voter was qualified to vote for nine of these candidates or for any less number. One of the electors wants to know in just how many different ways it was possible for him to vote.
106.--THE MUDDLETOWN ELECTION.
At the last Parliamentary election at Muddletown 5,473 votes were polled. The Liberal was elected by a majority of 18 over the Conservative, by 146 over the Independent, and by 575 over the Socialist. Can you give a simple rule for figuring out how many votes were polled for each candidate?
107.--THE SUFFRAGISTS' MEETING.
At a recent secret meeting of Suffragists a serious difference of opinion arose. This led to a split, and a certain number left the meeting. "I had half a mind to go myself," said the chair-woman, "and if I had done so, two-thirds of us would have retired." "True," said another member; "but if I had persuaded my friends Mrs. Wild and Christine Armstrong to remain we should only have lost half our number." Can you tell how many were present at the meeting at the start?
108.--THE LEAP-YEAR LADIES.
Last leap-year ladies lost no time in exercising the privilege of making proposals of marriage. If the figures that reached me from an occult source are correct, the following represents the state of affairs in this country.
A number of women proposed once each, of whom one-eighth were widows. In consequence, a number of men were to be married of whom one-eleventh were widowers. Of the proposals made to widowers, one-fifth were declined. All the widows were accepted. Thirty-five forty-fourths of the widows married bachelors. One thousand two hundred and twenty-one spinsters were declined by bachelors. The number of spinsters accepted by bachelors was seven times the number of widows accepted by bachelors. Those are all the particulars that I was able to obtain. Now, how many women proposed?
109.--THE GREAT SCRAMBLE.
After dinner, the five boys of a household happened to find a parcel of sugar-plums. It was quite unexpected loot, and an exciting scramble ensued, the full details of which I will recount with accuracy, as it forms an interesting puzzle.
You see, Andrew managed to get possession of just two-thirds of the parcel of sugar-plums. Bob at once grabbed three-eighths of these, and Charlie managed to seize three-tenths also. Then young David dashed upon the scene, and captured all that Andrew had left, except one-seventh, which Edgar artfully secured for himself by a cunning trick. Now the fun began in real earnest, for Andrew and Charlie jointly set upon Bob, who stumbled against the fender and dropped half of all that he had, which were equally picked up by David and Edgar, who had crawled under a table and were waiting. Next, Bob sprang on Charlie from a chair, and upset all the latter's collection on to the floor. Of this prize Andrew got just a quarter, Bob gathered up one-third, David got two-sevenths, while Charlie and Edgar divided equally what was left of that stock.
[Ill.u.s.tration]
They were just thinking the fray was over when David suddenly struck out in two directions at once, upsetting three-quarters of what Bob and Andrew had last acquired. The two latter, with the greatest difficulty, recovered five-eighths of it in equal shares, but the three others each carried off one-fifth of the same. Every sugar-plum was now accounted for, and they called a truce, and divided equally amongst them the remainder of the parcel. What is the smallest number of sugar-plums there could have been at the start, and what proportion did each boy obtain?
110.--THE ABBOT'S PUZZLE.
The first English puzzlist whose name has come down to us was a Yorks.h.i.+reman--no other than Alcuin, Abbot of Canterbury (A.D. 735-804). Here is a little puzzle from his works, which is at least interesting on account of its antiquity. "If 100 bushels of corn were distributed among 100 people in such a manner that each man received three bushels, each woman two, and each child half a bushel, how many men, women, and children were there?"
Now, there are six different correct answers, if we exclude a case where there would be no women. But let us say that there were just five times as many women as men, then what is the correct solution?
111.--REAPING THE CORN.
A farmer had a square cornfield. The corn was all ripe for reaping, and, as he was short of men, it was arranged that he and his son should share the work between them. The farmer first cut one rod wide all round the square, thus leaving a smaller square of standing corn in the middle of the field. "Now," he said to his son, "I have cut my half of the field, and you can do your share." The son was not quite satisfied as to the proposed division of labour, and as the village schoolmaster happened to be pa.s.sing, he appealed to that person to decide the matter. He found the farmer was quite correct, provided there was no dispute as to the size of the field, and on this point they were agreed. Can you tell the area of the field, as that ingenious schoolmaster succeeded in doing?
112.--A PUZZLING LEGACY.
A man left a hundred acres of land to be divided among his three sons--Alfred, Benjamin, and Charles--in the proportion of one-third, one-fourth, and one-fifth respectively. But Charles died. How was the land to be divided fairly between Alfred and Benjamin?
113.--THE TORN NUMBER.
[Ill.u.s.tration]
I had the other day in my possession a label bearing the number 3 0 2 5 in large figures. This got accidentally torn in half, so that 3 0 was on one piece and 2 5 on the other, as shown on the ill.u.s.tration. On looking at these pieces I began to make a calculation, scarcely conscious of what I was doing, when I discovered this little peculiarity. If we add the 3 0 and the 2 5 together and square the sum we get as the result the complete original number on the label! Thus, 30 added to 25 is 55, and 55 multiplied by 55 is 3025. Curious, is it not? Now, the puzzle is to find another number, composed of four figures, all different, which may be divided in the middle and produce the same result.
114.--CURIOUS NUMBERS.
The number 48 has this peculiarity, that if you add 1 to it the result is a square number (49, the square of 7), and if you add 1 to its half, you also get a square number (25, the square of 5). Now, there is no limit to the numbers that have this peculiarity, and it is an interesting puzzle to find three more of them--the smallest possible numbers. What are they?
115.--A PRINTER'S ERROR.
In a certain article a printer had to set up the figures 5^42^3, which, of course, means that the fourth power of 5 (625) is to be multiplied by the cube of 2 (8), the product of which is 5,000. But he printed 5^42^3 as 5 4 2 3, which is not correct. Can you place four digits in the manner shown, so that it will be equally correct if the printer sets it up aright or makes the same blunder?
116.--THE CONVERTED MISER.
Mr. Jasper Bullyon was one of the very few misers who have ever been converted to a sense of their duty towards their less fortunate fellow-men. One eventful night he counted out his acc.u.mulated wealth, and resolved to distribute it amongst the deserving poor.
He found that if he gave away the same number of pounds every day in the year, he could exactly spread it over a twelvemonth without there being anything left over; but if he rested on the Sundays, and only gave away a fixed number of pounds every weekday, there would be one sovereign left over on New Year's Eve. Now, putting it at the lowest possible, what was the exact number of pounds that he had to distribute?
Could any question be simpler? A sum of pounds divided by one number of days leaves no remainder, but divided by another number of days leaves a sovereign over. That is all; and yet, when you come to tackle this little question, you will be surprised that it can become so puzzling.
117.--A FENCE PROBLEM.
[Ill.u.s.tration]
The practical usefulness of puzzles is a point that we are liable to overlook. Yet, as a matter of fact, I have from time to time received quite a large number of letters from individuals who have found that the mastering of some little principle upon which a puzzle was built has proved of considerable value to them in a most unexpected way. Indeed, it may be accepted as a good maxim that a puzzle is of little real value unless, as well as being amusing and perplexing, it conceals some instructive and possibly useful feature. It is, however, very curious how these little bits of acquired knowledge dovetail into the occasional requirements of everyday life, and equally curious to what strange and mysterious uses some of our readers seem to apply them. What, for example, can be the object of Mr. Wm. Oxley, who writes to me all the way from Iowa, in wis.h.i.+ng to ascertain the dimensions of a field that he proposes to enclose, containing just as many acres as there shall be rails in the fence?
The man wishes to fence in a perfectly square field which is to contain just as many acres as there are rails in the required fence. Each hurdle, or portion of fence, is seven rails high, and two lengths would extend one pole (16 ft.): that is to say, there are fourteen rails to the pole, lineal measure. Now, what must be the size of the field?
118.--CIRCLING THE SQUARES.
[Ill.u.s.tration]
The puzzle is to place a different number in each of the ten squares so that the sum of the squares of any two adjacent numbers shall be equal to the sum of the squares of the two numbers diametrically opposite to them. The four numbers placed, as examples, must stand as they are. The square of 16 is 256, and the square of 2 is 4. Add these together, and the result is 260. Also--the square of 14 is 196, and the square of 8 is 64. These together also make 260. Now, in precisely the same way, B and C should be equal to G and H (the sum will not necessarily be 260), A and K to F and E, H and I to C and D, and so on, with any two adjoining squares in the circle.
All you have to do is to fill in the remaining six numbers. Fractions are not allowed, and I shall show that no number need contain more than two figures.
119.--RACKBRANE'S LITTLE LOSS.