Amusements in Mathematics - BestLightNovel.com
You’re reading novel Amusements in Mathematics Part 5 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy
[Ill.u.s.tration: Fig. 9]
[Ill.u.s.tration: Fig. 10]
[Ill.u.s.tration: Fig. 11]
It will be seen that every one of these puzzles has its reverse puzzle--to cut a square into pieces to form a Greek cross. But as a square has not so many angles as the cross, it is not always equally easy to discover the true directions of the cuts. Yet in the case of the examples given, I will leave the reader to determine their direction for himself, as they are rather obvious from the diagrams.
Cut a square into five pieces that will form two separate Greek crosses of different sizes. This is quite an easy puzzle. As will be seen in Fig. 12, we have only to divide our square into 25 little squares and then cut as shown. The cross A is cut out entire, and the pieces B, C, D, and E form the larger cross in Fig. 13. The reader may here like to cut the single piece, B, into four pieces all similar in shape to itself, and form a cross with them in the manner shown in Fig. 13. I hardly need give the solution.
[Ill.u.s.tration: FIG. 12.]
[Ill.u.s.tration: FIG. 13.]
Cut a square into five pieces that will form two separate Greek crosses of exactly the same size. This is more difficult. We make the cuts as in Fig. 14, where the cross A comes out entire and the other four pieces form the cross in Fig. 15. The direction of the cuts is pretty obvious. It will be seen that the sides of the square in Fig. 14 are marked off into six equal parts. The sides of the cross are found by ruling lines from certain of these points to others.
[Ill.u.s.tration: FIG. 14.]
[Ill.u.s.tration: FIG. 15.]
I will now explain, as I promised, why a Greek cross may be cut into four pieces in an infinite number of different ways to make a square. Draw a cross, as in Fig. 16. Then draw on transparent paper the square shown in Fig. 17, taking care that the distance c to d is exactly the same as the distance a to b in the cross. Now place the transparent paper over the cross and slide it about into different positions, only be very careful always to keep the square at the same angle to the cross as shown, where a b is parallel to c d. If you place the point c exactly over a the lines will indicate the solution (Figs. 10 and 11). If you place c in the very centre of the dotted square, it will give the solution in Figs. 8 and 9. You will now see that by sliding the square about so that the point c is always within the dotted square you may get as many different solutions as you like; because, since an infinite number of different points may theoretically be placed within this square, there must be an infinite number of different solutions. But the point c need not necessarily be placed within the dotted square. It may be placed, for example, at point e to give a solution in four pieces. Here the joins at a and f may be as slender as you like. Yet if you once get over the edge at a or f you no longer have a solution in four pieces. This proof will be found both entertaining and instructive. If you do not happen to have any transparent paper at hand, any thin paper will of course do if you hold the two sheets against a pane of gla.s.s in the window.
[Ill.u.s.tration: FIG. 16.]
[Ill.u.s.tration: FIG. 17.]
It may have been noticed from the solutions of the puzzles that I have given that the side of the square formed from the cross is always equal to the distance a to b in Fig. 16. This must necessarily be so, and I will presently try to make the point quite clear.
We will now go one step further. I have already said that the ideal solution to a cutting-out puzzle is always that which requires the fewest possible pieces. We have just seen that two crosses of the same size may be cut out of a square in five pieces. The reader who succeeded in solving this perhaps asked himself: "Can it be done in fewer pieces?" This is just the sort of question that the true puzzle lover is always asking, and it is the right att.i.tude for him to adopt. The answer to the question is that the puzzle may be solved in four pieces--the fewest possible. This, then, is a new puzzle. Cut a square into four pieces that will form two Greek crosses of the same size.
[Ill.u.s.tration: FIG. 18.]
[Ill.u.s.tration: FIG. 19.]
[Ill.u.s.tration: FIG. 20.]
The solution is very beautiful. If you divide by points the sides of the square into three equal parts, the directions of the lines in Fig. 18 will be quite obvious. If you cut along these lines, the pieces A and B will form the cross in Fig. 19 and the pieces C and D the similar cross in Fig. 20. In this square we have another form of Swastika.
The reader will here appreciate the truth of my remark to the effect that it is easier to find the directions of the cuts when transforming a cross to a square than when converting a square into a cross. Thus, in Figs. 6, 8, and 10 the directions of the cuts are more obvious than in Fig. 14, where we had first to divide the sides of the square into six equal parts, and in Fig. 18, where we divide them into three equal parts. Then, supposing you were required to cut two equal Greek crosses, each into two pieces, to form a square, a glance at Figs. 19 and 20 will show how absurdly more easy this is than the reverse puzzle of cutting the square to make two crosses.
Referring to my remarks on "fallacies," I will now give a little example of these "solutions" that are not solutions. Some years ago a young correspondent sent me what he evidently thought was a brilliant new discovery--the transforming of a square into a Greek cross in four pieces by cuts all parallel to the sides of the square. I give his attempt in Figs. 21 and 22, where it will be seen that the four pieces do not form a symmetrical Greek cross, because the four arms are not really squares but oblongs. To make it a true Greek cross we should require the additions that I have indicated with dotted lines. Of course his solution produces a cross, but it is not the symmetrical Greek variety required by the conditions of the puzzle. My young friend thought his attempt was "near enough" to be correct; but if he bought a penny apple with a sixpence he probably would not have thought it "near enough" if he had been given only fourpence change. As the reader advances he will realize the importance of this question of exact.i.tude.
[Ill.u.s.tration: FIG. 21.]
[Ill.u.s.tration: FIG. 22.]
In these cutting-out puzzles it is necessary not only to get the directions of the cutting lines as correct as possible, but to remember that these lines have no width. If after cutting up one of the crosses in a manner indicated in these articles you find that the pieces do not exactly fit to form a square, you may be certain that the fault is entirely your own. Either your cross was not exactly drawn, or your cuts were not made quite in the right directions, or (if you used wood and a fret-saw) your saw was not sufficiently fine. If you cut out the puzzles in paper with scissors, or in cardboard with a penknife, no material is lost; but with a saw, however fine, there is a certain loss. In the case of most puzzles this slight loss is not sufficient to be appreciable, if the puzzle is cut out on a large scale, but there have been instances where I have found it desirable to draw and cut out each part separately--not from one diagram--in order to produce a perfect result.
[Ill.u.s.tration: FIG. 23.]
[Ill.u.s.tration: FIG. 24.]
Now for another puzzle. If you have cut out the five pieces indicated in Fig. 14, you will find that these can be put together so as to form the curious cross shown in Fig. 23. So if I asked you to cut Fig. 24 into five pieces to form either a square or two equal Greek crosses you would know how to do it. You would make the cuts as in Fig. 23, and place them together as in Figs. 14 and 15. But I want something better than that, and it is this. Cut Fig. 24 into only four pieces that will fit together and form a square.
[Ill.u.s.tration: FIG. 25.]
[Ill.u.s.tration: FIG. 26.]
The solution to the puzzle is shown in Figs. 25 and 26. The direction of the cut dividing A and C in the first diagram is very obvious, and the second cut is made at right angles to it. That the four pieces should fit together and form a square will surprise the novice, who will do well to study the puzzle with some care, as it is most instructive.
I will now explain the beautiful rule by which we determine the size of a square that shall have the same area as a Greek cross, for it is applicable, and necessary, to the solution of almost every dissection puzzle that we meet with. It was first discovered by the philosopher Pythagoras, who died 500 B.C., and is the 47th proposition of Euclid. The young reader who knows nothing of the elements of geometry will get some idea of the fascinating character of that science. The triangle ABC in Fig. 27 is what we call a right-angled triangle, because the side BC is at right angles to the side AB. Now if we build up a square on each side of the triangle, the squares on AB and BC will together be exactly equal to the square on the long side AC, which we call the hypotenuse. This is proved in the case I have given by subdividing the three squares into cells of equal dimensions.
[Ill.u.s.tration: FIG. 27.]
[Ill.u.s.tration: FIG. 28.]
It will be seen that 9 added to 16 equals 25, the number of cells in the large square. If you make triangles with the sides 5, 12 and 13, or with 8, 15 and 17, you will get similar arithmetical proofs, for these are all "rational" right-angled triangles, but the law is equally true for all cases. Supposing we cut off the lower arm of a Greek cross and place it to the left of the upper arm, as in Fig. 28, then the square on EF added to the square on DE exactly equals a square on DF. Therefore we know that the square of DF will contain the same area as the cross. This fact we have proved practically by the solutions of the earlier puzzles of this series. But whatever length we give to DE and EF, we can never give the exact length of DF in numbers, because the triangle is not a "rational" one. But the law is none the less geometrically true.
[Ill.u.s.tration: FIG. 29.]
[Ill.u.s.tration: FIG. 30.]
Now look at Fig. 29, and you will see an elegant method for cutting a piece of wood of the shape of two squares (of any relative dimensions) into three pieces that will fit together and form a single square. If you mark off the distance ab equal to the side cd the directions of the cuts are very evident. From what we have just been considering, you will at once see why bc must be the length of the side of the new square. Make the experiment as often as you like, taking different relative proportions for the two squares, and you will find the rule always come true. If you make the two squares of exactly the same size, you will see that the diagonal of any square is always the side of a square that is twice the size. All this, which is so simple that anybody can understand it, is very essential to the solving of cutting-out puzzles. It is in fact the key to most of them. And it is all so beautiful that it seems a pity that it should not be familiar to everybody.
We will now go one step further and deal with the half-square. Take a square and cut it in half diagonally. Now try to discover how to cut this triangle into four pieces that will form a Greek cross. The solution is shown in Figs. 31 and 32. In this case it will be seen that we divide two of the sides of the triangle into three equal parts and the long side into four equal parts. Then the direction of the cuts will be easily found. It is a pretty puzzle, and a little more difficult than some of the others that I have given. It should be noted again that it would have been much easier to locate the cuts in the reverse puzzle of cutting the cross to form a half-square triangle.
[Ill.u.s.tration: FIG. 31.]
[Ill.u.s.tration: FIG. 32.]
[Ill.u.s.tration: FIG. 33.]
[Ill.u.s.tration: FIG. 34.]
Another ideal that the puzzle maker always keeps in mind is to contrive that there shall, if possible, be only one correct solution. Thus, in the case of the first puzzle, if we only require that a Greek cross shall be cut into four pieces to form a square, there is, as I have shown, an infinite number of different solutions. It makes a better puzzle to add the condition that all the four pieces shall be of the same size and shape, because it can then be solved in only one way, as in Figs. 8 and 9. In this way, too, a puzzle that is too easy to be interesting may be improved by such an addition. Let us take an example. We have seen in Fig. 28 that Fig. 33 can be cut into two pieces to form a Greek cross. I suppose an intelligent child would do it in five minutes. But suppose we say that the puzzle has to be solved with a piece of wood that has a bad knot in the position shown in Fig. 33--a knot that we must not attempt to cut through--then a solution in two pieces is barred out, and it becomes a more interesting puzzle to solve it in three pieces. I have shown in Figs. 33 and 34 one way of doing this, and it will be found entertaining to discover other ways of doing it. Of course I could bar out all these other ways by introducing more knots, and so reduce the puzzle to a single solution, but it would then be overloaded with conditions.
And this brings us to another point in seeking the ideal. Do not overload your conditions, or you will make your puzzle too complex to be interesting. The simpler the conditions of a puzzle are, the better. The solution may be as complex and difficult as you like, or as happens, but the conditions ought to be easily understood, or people will not attempt a solution.
If the reader were now asked "to cut a half-square into as few pieces as possible to form a Greek cross," he would probably produce our solution, Figs. 31-32, and confidently claim that he had solved the puzzle correctly. In this way he would be wrong, because it is not now stated that the square is to be divided diagonally. Although we should always observe the exact conditions of a puzzle we must not read into it conditions that are not there. Many puzzles are based entirely on the tendency that people have to do this.
The very first essential in solving a puzzle is to be sure that you understand the exact conditions. Now, if you divided your square in half so as to produce Fig. 35 it is possible to cut it into as few as three pieces to form a Greek cross. We thus save a piece.
I give another puzzle in Fig. 36. The dotted lines are added merely to show the correct proportions of the figure--a square of 25 cells with the four corner cells cut out. The puzzle is to cut this figure into five pieces that will form a Greek cross (entire) and a square.
[Ill.u.s.tration: FIG. 35.]
[Ill.u.s.tration: FIG. 36.]
The solution to the first of the two puzzles last given--to cut a rectangle of the shape of a half-square into three pieces that will form a Greek cross--is shown in Figs. 37 and 38. It will be seen that we divide the long sides of the oblong into six equal parts and the short sides into three equal parts, in order to get the points that will indicate the direction of the cuts. The reader should compare this solution with some of the previous ill.u.s.trations. He will see, for example, that if we continue the cut that divides B and C in the cross, we get Fig. 15.
[Ill.u.s.tration: FIG. 37.]
[Ill.u.s.tration: FIG. 38.]
The other puzzle, like the one ill.u.s.trated in Figs. 12 and 13, will show how useful a little arithmetic may sometimes prove to be in the solution of dissection puzzles. There are twenty-one of those little square cells into which our figure is subdivided, from which we have to form both a square and a Greek cross. Now, as the cross is built up of five squares, and 5 from 21 leaves 16--a square number--we ought easily to be led to the solution shown in Fig. 39. It will be seen that the cross is cut out entire, while the four remaining pieces form the square in Fig. 40.
[Ill.u.s.tration: FIG. 39]
[Ill.u.s.tration: FIG. 40]
Of course a half-square rectangle is the same as a double square, or two equal squares joined together. Therefore, if you want to solve the puzzle of cutting a Greek cross into four pieces to form two separate squares of the same size, all you have to do is to continue the short cut in Fig. 38 right across the cross, and you will have four pieces of the same size and shape. Now divide Fig. 37 into two equal squares by a horizontal cut midway and you will see the four pieces forming the two squares.
[Ill.u.s.tration: FIG. 41]
Cut a Greek cross into five pieces that will form two separate squares, one of which shall contain half the area of one of the arms of the cross. In further ill.u.s.tration of what I have already written, if the two squares of the same size A B C D and B C F E, in Fig. 41, are cut in the manner indicated by the dotted lines, the four pieces will form the large square A G E C. We thus see that the diagonal A C is the side of a square twice the size of A B C D. It is also clear that half the diagonal of any square is equal to the side of a square of half the area. Therefore, if the large square in the diagram is one of the arms of your cross, the small square is the size of one of the squares required in the puzzle.
The solution is shown in Figs. 42 and 43. It will be seen that the small square is cut out whole and the large square composed of the four pieces B, C, D, and E. After what I have written, the reader will have no difficulty in seeing that the square A is half the size of one of the arms of the cross, because the length of the diagonal of the former is clearly the same as the side of the latter. The thing is now self-evident. I have thus tried to show that some of these puzzles that many people are apt to regard as quite wonderful and bewildering, are really not difficult if only we use a little thought and judgment. In conclusion of this particular subject I will give four Greek cross puzzles, with detached solutions.
142.--THE SILK PATCHWORK.
The lady members of the Wilkinson family had made a simple patchwork quilt, as a small Christmas present, all composed of square pieces of the same size, as shown in the ill.u.s.tration. It only lacked the four corner pieces to make it complete. Somebody pointed out to them that if you unpicked the Greek cross in the middle and then cut the st.i.tches along the dark joins, the four pieces all of the same size and shape would fit together and form a square. This the reader knows, from the solution in Fig. 39, is quite easily done. But George Wilkinson suddenly suggested to them this poser. He said, "Instead of picking out the cross entire, and forming the square from four equal pieces, can you cut out a square entire and four equal pieces that will form a perfect Greek cross?" The puzzle is, of course, now quite easy.
143.--TWO CROSSES FROM ONE.
Cut a Greek cross into five pieces that will form two such crosses, both of the same size. The solution of this puzzle is very beautiful.
144.--THE CROSS AND THE TRIANGLE.
Cut a Greek cross into six pieces that will form an equilateral triangle. This is another hard problem, and I will state here that a solution is practically impossible without a previous knowledge of my method of transforming an equilateral triangle into a square (see No. 26, "Canterbury Puzzles").
145.--THE FOLDED CROSS.
Cut out of paper a Greek cross; then so fold it that with a single straight cut of the scissors the four pieces produced will form a square.
VARIOUS DISSECTION PUZZLES.
We will now consider a small miscellaneous selection of cutting-out puzzles, varying in degrees of difficulty.
146.--AN EASY DISSECTION PUZZLE.
First, cut out a piece of paper or cardboard of the shape shown in the ill.u.s.tration. It will be seen at once that the proportions are simply those of a square attached to half of another similar square, divided diagonally. The puzzle is to cut it into four pieces all of precisely the same size and shape.
147.--AN EASY SQUARE PUZZLE.
If you take a rectangular piece of cardboard, twice as long as it is broad, and cut it in half diagonally, you will get two of the pieces shown in the ill.u.s.tration. The puzzle is with five such pieces of equal size to form a square. One of the pieces may be cut in two, but the others must be used intact.
148.--THE BUN PUZZLE.
THE three circles represent three buns, and it is simply required to show how these may be equally divided among four boys. The buns must be regarded as of equal thickness throughout and of equal thickness to each other. Of course, they must be cut into as few pieces as possible. To simplify it I will state the rather surprising fact that only five pieces are necessary, from which it will be seen that one boy gets his share in two pieces and the other three receive theirs in a single piece. I am aware that this statement "gives away" the puzzle, but it should not destroy its interest to those who like to discover the "reason why."
149.--THE CHOCOLATE SQUARES.
Here is a slab of chocolate, indented at the dotted lines so that the twenty squares can be easily separated. Make a copy of the slab in paper or cardboard and then try to cut it into nine pieces so that they will form four perfect squares all of exactly the same size.
150.--DISSECTING A MITRE.
The figure that is perplexing the carpenter in the ill.u.s.tration represents a mitre. It will be seen that its proportions are those of a square with one quarter removed. The puzzle is to cut it into five pieces that will fit together and form a perfect square. I show an attempt, published in America, to perform the feat in four pieces, based on what is known as the "step principle," but it is a fallacy.
[Ill.u.s.tration]
We are told first to cut oft the pieces 1 and 2 and pack them into the triangular s.p.a.ce marked off by the dotted line, and so form a rectangle.
So far, so good. Now, we are directed to apply the old step principle, as shown, and, by moving down the piece 4 one step, form the required square. But, unfortunately, it does not produce a square: only an oblong. Call the three long sides of the mitre 84 in. each. Then, before cutting the steps, our rectangle in three pieces will be 84 63. The steps must be 10 in. in height and 12 in. in breadth. Therefore, by moving down a step we reduce by 12 in. the side 84 in. and increase by 10 in. the side 63 in. Hence our final rectangle must be 72 in. 73 in., which certainly is not a square! The fact is, the step principle can only be applied to rectangles with sides of particular relative lengths. For example, if the shorter side in this case were 61+5/7 (instead of 63), then the step method would apply. For the steps would then be 10+2/7 in. in height and 12 in. in breadth. Note that 61+5/7 84 = the square of 72. At present no solution has been found in four pieces, and I do not believe one possible.
151.--THE JOINER'S PROBLEM.
I have often had occasion to remark on the practical utility of puzzles, arising out of an application to the ordinary affairs of life of the little tricks and "wrinkles" that we learn while solving recreation problems.
[Ill.u.s.tration]
The joiner, in the ill.u.s.tration, wants to cut the piece of wood into as few pieces as possible to form a square table-top, without any waste of material. How should he go to work? How many pieces would you require?
152.--ANOTHER JOINER'S PROBLEM.
[Ill.u.s.tration]
A joiner had two pieces of wood of the shapes and relative proportions shown in the diagram. He wished to cut them into as few pieces as possible so that they could be fitted together, without waste, to form a perfectly square table-top. How should he have done it? There is no necessity to give measurements, for if the smaller piece (which is half a square) be made a little too large or a little too small it will not affect the method of solution.
153--A CUTTING-OUT PUZZLE.
Here is a little cutting-out poser. I take a strip of paper, measuring five inches by one inch, and, by cutting it into five pieces, the parts fit together and form a square, as shown in the ill.u.s.tration. Now, it is quite an interesting puzzle to discover how we can do this in only four pieces.
[Ill.u.s.tration]
154.--MRS. HOBSON'S HEARTHRUG.
[Ill.u.s.tration]
Mrs. Hobson's boy had an accident when playing with the fire, and burnt two of the corners of a pretty hearthrug. The damaged corners have been cut away, and it now has the appearance and proportions shown in my diagram. How is Mrs. Hobson to cut the rug into the fewest possible pieces that will fit together and form a perfectly square rug? It will be seen that the rug is in the proportions 36 27 (it does not matter whether we say inches or yards), and each piece cut away measured 12 and 6 on the outside.
155.--THE PENTAGON AND SQUARE.
I wonder how many of my readers, amongst those who have not given any close attention to the elements of geometry, could draw a regular pentagon, or five-sided figure, if they suddenly required to do so. A regular hexagon, or six-sided figure, is easy enough, for everybody knows that all you have to do is to describe a circle and then, taking the radius as the length of one of the sides, mark off the six points round the circ.u.mference. But a pentagon is quite another matter. So, as my puzzle has to do with the cutting up of a regular pentagon, it will perhaps be well if I first show my less experienced readers how this figure is to be correctly drawn. Describe a circle and draw the two lines H B and D G, in the diagram, through the centre at right angles. Now find the point A, midway between C and B. Next place the point of your compa.s.ses at A and with the distance A D describe the arc cutting H B at E. Then place the point of your compa.s.ses at D and with the distance D E describe the arc cutting the circ.u.mference at F. Now, D F is one of the sides of your pentagon, and you have simply to mark off the other sides round the circle. Quite simple when you know how, but otherwise somewhat of a poser.
[Ill.u.s.tration]
Having formed your pentagon, the puzzle is to cut it into the fewest possible pieces that will fit together and form a perfect square.
[Ill.u.s.tration]