BestLightNovel.com

The Romance of Modern Invention Part 19

The Romance of Modern Invention - BestLightNovel.com

You’re reading novel The Romance of Modern Invention Part 19 online at BestLightNovel.com. Please use the follow button to get notification about the latest chapter next time when you visit BestLightNovel.com. Use F11 button to read novel in full-screen(PC only). Drop by anytime you want to read free – fast – latest novel. It’s great if you could leave a comment, share your opinion about the new chapters, new novel with others on the internet. We’ll do our best to bring you the finest, latest novel everyday. Enjoy

The reason of this is not far to seek. The difficulties attending the creation of a successful flying-machine are immense, some unique, not being found in aquatic and terrestrial locomotion.

In the first place, the airs.h.i.+p, flying-machine, aerostat, or whatever we please to call it, must not merely move, but also lift itself.

Neither a s.h.i.+p nor a locomotive is called upon to do this. Its ability to lift itself must depend upon either the employment of large balloons or upon sheer power. In the first case the balloon will, by reason of its size, be unmanageable in a high wind; in the second case, a breakdown in the machinery would probably prove fatal.

Even supposing that our aerostat can lift itself successfully, we encounter the difficulties connected with steering in a medium traversed by ever-s.h.i.+fting currents of air, which demands of the helmsman a caution and capacity seldom required on land or water. Add to these the difficulties of leaving the ground and alighting safely upon it; and, what is more serious than all, the fact that though success can be attained only by experiment, experiment is in this case extremely expensive and risky, any failure often resulting in total ruin of the machine, and sometimes in loss of life. The list of those who have perished in the search for the power of flight is a very long one.

Yet in spite of these obstacles determined attempts have been and are being made to conquer the air. Men in a position to judge are confident that the day of conquest is not very far distant, and that the next generation may be as familiar with aerostats as we with motor-cars. Speculation as to the future is, however, here less profitable than a consideration of what has been already done in the direction of collecting forces for the final victory.

To begin at the beginning, we see that experimenters must be divided into two great cla.s.ses: those who pin their faith to airs.h.i.+ps lighter than air, _e.g._ Santos Dumont, Zeppelin, Roze; and those who have small respect for balloons, and see the ideal air-craft in a _machine_ lifted entirely by means of power and surfaces pressing the air after the manner of a kite. Sir Hiram Maxim and Professor S. P. Langley, Mr.

Lawrence Hargrave, and Mr. Sydney Hollands are eminent members of the latter cult.

As soon as we get on the topic of steerable balloons the name of Mr.

Santos Dumont looms large. But before dealing with his exploits we may notice the airs.h.i.+p of Count Zeppelin, an ingenious and costly structure that was tested over Lake Constance in 1900.

The balloon was built in a large wooden shed, 450 by 78 by 66 feet, that floated on the lake on ninety pontoons. The shed alone cost over 10,000.

The balloon itself was nearly 400 feet long, with a cylindrical diameter of 39 feet, except at its ends, which were conical, to offer as little resistance as possible to the air. Externally it afforded the appearance of a single-compartment bag, but in reality it was divided into seventeen parts, each gas-tight, so that an accident to one part of the fabric should not imperil the whole.

A framework of aluminium rods and rings gave the bag a partial rigidity.

Its capacity was 12,000 cubic yards of hydrogen gas, which, as our readers doubtless know, is much lighter though more expensive than ordinary coal-gas; each inflation costing several hundreds of pounds.

Under the balloon hung two cars of aluminium, the motors and the screws; and also a great sliding weight of 600 lbs. for altering the "tip" of the airs.h.i.+p; and rudders to steer its course.

On June 30 a great number of scientific men and experts a.s.sembled to witness the behaviour of a balloon which had cost 20,000. For two days wind prevented a start, but on July 2, at 7.30 P.M., the balloon emerged from its shed, and at eight o'clock commenced its first journey, with and against a light easterly wind for a distance of three and a half miles. A mishap to the steering-gear occurred early in the trip, and prevented the airs.h.i.+p appearing to advantage, but a landing was effected easily and safely. In the following October the Count made a second attempt, returning against a wind blowing at three yards a second, or rather more than six miles an hour.

[Ill.u.s.tration: _The air-s.h.i.+p of M. Santos-Dumont rounding the Eiffel Tower during its successful run for the Henri Deutsch Prize._]

Owing to lack of funds the fate of the "Great Eastern" has overtaken the Zeppelin airs.h.i.+p--to be broken up, and the parts sold.

The aged Count had demonstrated that a petroleum motor could be used in the neighbourhood of gas without danger. It was, however, reserved for a younger man to give a more decided proof of the steerableness of a balloon.

In 1900 M. Henri Deutsch, a member of the French Aero Club, founded a prize of 4000, to win which a compet.i.tor must start from the Aero Club Park, near the Seine in Paris, sail to and round the Eiffel Tower, and be back at the starting-point within a time-limit of half-an-hour.

M. Santos Dumont, a wealthy and plucky young Brazilian, had, previously to this offer, made several successful journeys in motor balloons in the neighbourhood of the Eiffel Tower. He therefore determined to make a bid for the prize with a specially constructed balloon "Santos Dumont V." The third unsuccessful attempt ended in disaster to the airs.h.i.+p, which fell on to the houses, but fortunately without injuring its occupant.

Another balloon--"Santos Dumont VI."--was then built. On Sat.u.r.day, October 19th, M. Dumont reached the Tower in nine minutes and recrossed the starting line in 20-1/2 more minutes, thus complying with the conditions of the prize with half-a-minute to spare. A dispute, however, arose as to whether the prize had been actually won, some of the committee contending that the balloon should have come to earth within the half-hour, instead of merely pa.s.sing overhead; but finally the well-merited prize was awarded to the determined young aeronaut.

The successful airs.h.i.+p was of moderate proportions as compared with that of Count Zeppelin. The cigar-shaped bag was 112 feet long and 20 feet in diameter, holding 715 cubic yards of gas. M. Dumont showed originality in furnis.h.i.+ng it with a smaller balloon inside, which could be pumped full of air so as to counteract any leakage in the external bag and keep it taut. The motor, on which everything depended, was a four-cylinder petrol-driven engine, furnished with "water-jackets" to prevent over-heating. The motor turned a large screw--made of silk and stretched over light frames--200 times a minute, giving a driving force of 175 lbs. Behind, a rudder directed the airs.h.i.+p, and in front hung down a long rope suspended by one end that could be drawn towards the centre of the frame to alter the trim of the s.h.i.+p. The aeronaut stood in a large wicker basket flanked on either side by bags of sand ballast. The fact that the motor, once stopped, could only be restarted by coming to earth again added an element of great uncertainty to all his trips; and on one occasion the mis-firing of one of the cylinders almost brought about a collision with the Eiffel Tower.

From Paris M. Dumont went to Monaco at the invitation of the prince of that princ.i.p.ality, and cruised about over the bay in his balloon. His fresh scheme was to cross to Corsica, but it was brought to an abrupt conclusion by a leakage of gas, which precipitated balloon and balloonist into the sea. Dumont was rescued, and at once set about new projects, including a visit to the Crystal Palace, where he would have made a series of ascents this summer (1902) but for damage done to the silk of the gas-bag by its immersion in salt water and the other vicissitudes it had pa.s.sed through. Dumont's most important achievement has been, like that of Count Zeppelin, the application of the gasolene motor to aeromobilism. In proportion to its size this form of motor develops a large amount of energy, and its mechanism is comparatively simple--a matter of great moment to the aeronaut. He has also shown that under favourable conditions a balloon may be steered against a head-wind, though not with the certainty that is desirable before air travel can be p.r.o.nounced an even moderately simple undertaking. The fact that many inventors, such as Dr. Barton, M.

Roze, Henri Deutsch, are fitting motors to balloons in the hopes of solving the aerial problem shows that the airs.h.i.+p has still a strong hold on the minds of men. But on reviewing the successes of such combinations of lifting and driving power it must be confessed, with all due respect to M. Dumont, that they are somewhat meagre, and do not show any great advance.

The question is whether these men are not working on wrong lines, and whether their utmost endeavours and those of their successors will ever produce anything more than a very semi-successful craft. Their efforts appear foredoomed to failure. As Sir Hiram Maxim has observed, a balloon by its very nature is light and fragile, it is a mere bubble. If it were possible to construct a motor to develop 100 horse-power for every pound of its weight, it would still be impossible to navigate a balloon against a wind of more than a certain strength. The mere energy of the motor would crush the gas-bag against the pressure of the wind, deform it, and render it unmanageable.

Balloons therefore must be at the mercy of the wind, and obliged to submit to it under conditions not always in accordance with the wish of the aeronaut.

Sir Hiram in condemning the airs.h.i.+p was ready with a subst.i.tute. On looking round on the patterns of Nature, he concluded that, inasmuch as all things that fly are heavier than air, the problem of aerial navigation must be solved by a machine whose natural tendency is to fall to the ground, and which can be sustained only by the exertion of great force. Its very weight would enable it to withstand, at least to a far greater extent than the airs.h.i.+p, the varying currents of the air.

The lifting principle must be a.n.a.logous to that by which a kite is suspended. A kite is prevented from rising beyond a certain height by a string, and the pressure of the wind working against it at an angle tends to lift it, like a soft wedge continuously driven under it. In practice it makes no difference whether the kite be stationary in a wind or towed rapidly through a dead calm; the wedge-like action of the air remains the same.

Maxim decided upon constructing what was practically a huge compound kite driven by very powerful motors.

But before setting to work on the machine itself he made some useful experiments to determine the necessary size of his kites or aeroplanes, and the force requisite to move them.

He accordingly built a "whirling-table," consisting of a long arm mounted on a strong pivot at one end, and driven by a 10 horse-power engine. To the free end, which described a circle of 200 feet in circ.u.mference, he attached small aeroplanes, and by means of delicate balances discovered that at 40 miles an hour the aeroplane would lift 133 lbs. per horse-power, and at 60 miles per hour every square foot of surface sustained 8 lbs. weight. He, in common with other experimenters on the same lines, became aware of the fact that if it took a certain strain to suspend a stationary weight in the air, _to advance it rapidly as well as to suspend it took a smaller strain_.

Now, as on sea and land, increased speed means a very rapid increase in the force required, this is a point in favour of the flying-machine. Professor Langley found that a bra.s.s plate weighing a pound, when whirled at great speed, was supported in the air by a pulling pressure of less than one ounce. And, of course, as the speed increased the plate became more nearly horizontal, offering less resistance to the air.

It is on this behaviour of the aeroplane that the hopes of Maxim and others have been based. The swiftly moving aeroplane, coming constantly on to fresh air, the inertia of which had not been disturbed, would resemble the skater who can at high speed traverse ice that would not bear him at rest.

Maxim next turned his attention to the construction of the aeroplanes and engines. He made a special machine for testing fabrics, to decide which would be most suitable for stretching over strong frames to form the planes. The fabric must be light, very strong, and offer small frictional resistance to the air. The testing-machine was fitted with a nozzle, through which air was forced at a known pace on to the substance under trial, which met the air current at a certain angle and by means of indicators showed the strength of its "lift" or tendency to rise, and that of its "drift" or tendency to move horizontally in the direction of the air-current. A piece of tin, mounted at an angle of one in ten to the air-current, showed a "lift"

of ten times its "drift." This proportion was made the standard.

Experiments conducted on velvet, plush, silk, cotton and woollen goods proved that the drift of c.r.a.pe was several times that of its lift, but that fine linen had a lift equal to nine times its drift; while a sample of Spencer's balloon fabric was as good as tin.

Accordingly he selected this balloon fabric to stretch over light but strong frames. The stretching of the material was no easy matter, as uneven tension distorted it; but eventually the aeroplanes were completed, tight as drumheads.

The large or central plane was 50 feet wide and 40 long; on either side were auxiliary planes, five pairs; giving a total area of 5400 square feet.

The steam-engine built to give the motive power was perhaps the most interesting feature of the whole construction. Maxim employed steam in preference to any other power as being one with which he was most familiar, and yielding most force in proportion to the weight of the apparatus. He designed and constructed a pair of high-pressure compound engines, the high-pressure cylinders 5 inches in diameter, the low-pressure 8 inches, and both 1 foot stroke. Steam was supplied to the high-pressure cylinders at 320 lbs. per square inch from a tubular boiler heated by a gasolene burner so powerful in its action as to raise the pressure from 100 to 200 lbs. in a minute. The total weight of the boiler, burner, and engines developing 350 horse-power was 2000 lbs., or about 6 lbs. per horse-power.

The two screw-propellers driven by the engine measured 17 feet 11 inches in diameter.

The completed flying-machine, weighing 7500 lbs., was mounted on a railway-truck of 9-foot gauge, in Baldwyn's Park, Kent, not far from the gun-factories for which Sir Hiram is famous. Outside and parallel to the 9-foot track was a second track, 35 feet across, with a reversed rail, so that as soon as the machine should rise from the inner track long spars furnished with f.l.a.n.g.ed wheels at their extremities should press against the under side of the outer track and prevent the machine from rising too far. Dynamometers, or instruments for measuring strains, were fitted to decide the driving and lifting power of the screws. Experiments proved that with the engines working at full power the screw-thrust against the air was 2200 lbs., and the lifting force of the aeroplanes 10,000 lbs., or 1500 in excess of the machine's weight.

Everything being ready the machine was fastened to a dynamometer and steam run up until it strained at its tether with maximum power; when the moorings were suddenly released and it bounded forward at a terrific pace, so suddenly that some of the crew were flung violently down on to the platform. When a speed of 42 miles was reached the inner wheels left their track, and the outer wheels came into play.

Unfortunately, the long 35-foot axletrees were too weak to bear the strain, and one of them broke. The upper track gave way, and for the first time in the history of the world a flying-machine actually left the ground fully equipped with engines, boiler, fuel, and a crew. The journey, however, was a short one, for part of the broken track fouled the screws, snapped a propeller blade and necessitated the shutting off of the steam, which done, the machine settled to earth, the wheels sinking into the sward and showing by the absence of any marks that it had come directly downwards and not run along the surface.

The inventor was prevented by other business, and by the want of a sufficiently large open s.p.a.ce, from continuing his experiments, which had demonstrated that a large machine heavier than air could be made to lift itself and move at high speed. Misfortune alone prevented its true capacities being shown.

Another experimenter on similar lines, but on a less heroic scale than Sir Hiram Maxim, is Professor S. P. Langley, the secretary of the Smithsonian Inst.i.tution, Was.h.i.+ngton. For sixteen years he has devoted himself to a persevering course of study of the flying-machine, and after oft-repeated failures has scored a decided success in his Aerodrome, which, though only a model, has made considerable flights.

His researches have proved beyond doubt that the amount of energy required for flight is but one-fiftieth of what was formerly regarded as a minimum. A French mathematician had proved by figures that a swallow must develop the power of a horse to maintain its rapid flight! Professor Langley's aerodrome has told a very different tale, affording another instance of the truth of the saying that an ounce of practice is worth a pound of theory.

A bird is nearly one thousand times heavier than the air it displaces.

As a motor it develops huge power for its weight, and consumes a very large amount of fuel in doing so. An observant naturalist has calculated that the homely robin devours per diem, in proportion to its size, what would be to a man a sausage two hundred feet long and three inches thick! Any one who has watched birds pulling worms out of the garden lawn and swallowing them wholesale can readily credit this.

Professor Langley therefore concentrated himself on the production of an extremely light and at the same time powerful machine. Like Maxim, he turned to steam for motive-power, and by rigid economy of weight constructed an engine with boilers weighing 5 lbs., cylinders of 26 ozs., and an energy of 1 to 1-1/2 horse-power! Surely a masterpiece of mechanical workmans.h.i.+p! This he enclosed in a boat-shaped cover which hung from two pairs of aeroplanes 12-1/2 feet from tip to tip. The whole apparatus weighed nearly 30 lbs., of which one quarter represented the machinery. Experiments with smaller aerodromes warned the Professor that rigidity and balance were the two most difficult things to attain; also that the starting of the machine on its aerial course was far from an easy matter.

A soaring bird does not rise straight from the ground, but opens its wings and runs along the ground until the pressure of the air raises it sufficiently to give a full stroke of its pinions. Also it rises _against_ the wind to get the full benefit of its lifting force.

Professor Langley hired a houseboat on the Potomac River, and on the top of it built an apparatus from which the aerodrome could be launched into s.p.a.ce at high velocity.

On May 6, 1896, after a long wait for propitious weather, the aerodrome was despatched on a trial trip. It rose in the face of the wind and travelled for over half a mile at the rate of twenty-five miles an hour. The water and fuel being then exhausted it settled lightly on the water and was again launched. Its flight on both occasions was steady, and limited only by the rapid consumption of its power-producing elements. The Professor believes that larger machines would remain in the air for a long period and travel at speeds. .h.i.therto unknown to us.

In both the machines that we have considered the propulsive power was a screw. No counterpart of it is seen in Nature. This is not a valid argument against its employment, since no animal is furnished with driving-wheels, nor does any fish carry a revolving propeller in its tail. But some inventors are strongly in favour of copying Nature as regards the employment of wings. Mr. Sydney H. Hollands, an enthusiastic aeromobilist, has devised an ingenious cylinder-motor so arranged as to flap a pair of long wings, giving them a much stronger impulse on the down than on the up stroke. The pectoral muscles of a bird are reproduced by two strong springs which are extended by the upward motion of the wings and store up energy for the down-stroke.

Close attention is also being paid to the actual shape of a bird's wing, which is not flat but hollow on its under side, and at the front has a slightly downward dip. "Aerocurves" are therefore likely to supersede the "aeroplane," for Nature would not have built bird's wings as they are without an object. The theory of the aerocurve's action is this: that the front of the wing, on striking the air, gives it a downwards motion, and if the wing were quite flat its rear portion would strike air already in motion, and therefore less buoyant. The curvature of a floating bird's wings, which becomes more and more p.r.o.nounced towards the rear, counteracts this yielding of the air by pressing harder upon it as it pa.s.ses towards their hinder edge.

[Ill.u.s.tration: _M. Santos Dumont's Airs.h.i.+p returning to Longchamps after doubling the Eiffel Tower, October 19, 1901._]

The aerocurve has been used by a very interesting group of experimenters, those who, putting motors entirely aside, have floated on wings, and learnt some of the secrets of balancing in the air. For a man to propel himself by flapping wings moved by legs or arms is impossible. Sir Hiram Maxim, in addressing the Aeronautical Society, once said that for a man to successfully imitate a bird his lungs must weigh 40 lbs., to consume sufficient oxygen, his breast muscles 75 lbs., and his breast bone be extended in front 21 inches. And unless his total weight were increased his legs must dwindle to the size of broomsticks, his head to that of an apple! So that for the present we shall be content to remain as we are!

Please click Like and leave more comments to support and keep us alive.

RECENTLY UPDATED MANGA

The Romance of Modern Invention Part 19 summary

You're reading The Romance of Modern Invention. This manga has been translated by Updating. Author(s): Archibald Williams. Already has 710 views.

It's great if you read and follow any novel on our website. We promise you that we'll bring you the latest, hottest novel everyday and FREE.

BestLightNovel.com is a most smartest website for reading manga online, it can automatic resize images to fit your pc screen, even on your mobile. Experience now by using your smartphone and access to BestLightNovel.com